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Efficient Calibration of Trinomial Trees for

One-Factor Short Rate Models

ABSTRACT

In this paper we discuss the implementation of general one-factor short rate models

with a trinomial tree. Taking the Hull-White model as a starting point, our contribution

is threefold. First, we show how trees can be spanned using a set of general branching

processes. Secondly, we improve Hull-White’s procedure to calibrate the tree to bond

prices by a much more efficient approach. This approach is applicable to a wide range of

term structure models. Finally, we show how the tree can be adjusted to the volatility

structure. The proposed approach leads to an efficient and flexible construction method

for trinomial trees, which can be easily implemented and calibrated to both prices and

volatilities.

JEL Classification Codes: G13, C6.
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In this paper, we elaborate on the implementation and calibration of one-factor short rate

models. We contribute to the existing literature threefold. First, we show how spanning the tree

can be generalized to allow for different alternative branching processes. This not only allows

to use alternative branching processes to avoid negative interest rates as in Hull and White

(1994), but also allows to obtain a “slender” tree at the edges. This can substantially reduce

the computational time. Moreover, the additional flexibility in defining branching processes

becomes important when pricing certain types of exotic options. For barrier options, as an

example, a finer grid around the barrier helps to increase the convergence of the numerical

tree method. Second, and this is our main contribution, we improve the procedure of Hull and

White (1994) to calibrate the tree to bond prices by a computationally much more efficient

approach. In particular, when pricing an interest rate derivative, one has first to perform

a forward induction to match the tree, and secondly one has to do backward induction to

price the instrument. The forward induction can become especially computationally intensive.

With our approach, however, we are only left with backward induction. Thus, a substantial

reduction in computational costs is achieved. Moreover, our approach is not only restricted to

the extended Vasicek model, but it is applicable to a wide range of short rate models. Finally,

we show how the tree can be adjusted to the volatility structure in such a manner that our

approach to match the initial term structure is still applicable. This is done by exploiting the

flexibility embedded in the trinomial tree model.

Our paper is structured as follows. Section 1 presents the basic setup and introduces the

notation. Furthermore, this section gives a brief overview of term structure models, which can

be handled with our approach. Section 2 elaborates on the modelling of the state variable
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process within a trinomial tree. Section 3 presents our calibration procedures and provides

some explicit examples. Section 4 concludes.

1. Model Setup

We assume that the market is complete and arbitrage opportunities are absent. Then, there

exists a unique risk-neutral pricing measure P on (Ω,F) such that every claim discounted by

the money market account is a martingale under P. The state space is described by the one-

dimensional process Xt with X0 = x. We assume that Xt follows a time-homogeneous Markov

process. Interest rates and bond prices can be expressed as functions of Xt, i.e. we assume

P (Xt, t, T ) to be the time-t pricing functional for a zero bond in state Xt, which pays $1 at

the maturity date T . Then,

P (Xt, t, T ) = E

[

e−
∫

T

t
rsds |Ft

]

,

where rt is the short term interest rate and E [· |Ft ] is the expectation operator under P. We

further require the zero bond to satisfy the conditions P (Xt, t, t) = 1 and lim P (Xt, t, T ) = 0

as T → ∞ for all Xt and t. To abbreviate notation, bond prices observed from the initial term

structure, P (x, 0, T ), are denoted by P ?(T ). Given the above setting, specifying a short rate

model can be done in two steps:

1. Defining a state variable process Xt. Here, we make the basic assumption that X follows

an Itô diffusion,

dXt = µX(Xt)dt + σX(Xt)dWt, X0 = x, (1)

2



under the measure P.

2. Defining the functional form g(X, t) = rt, which translates the state variable to the

interest rate. Under the appropriate technical conditions, we can then write the general

dynamics for the short rate as

drt = Lg(X, t)dt +
∂g(X, t)

∂X
σX(Xt)dWt,

where L is the extended generator.1

Thus, depending on the choices µX , σX and g(X, t), we can construct a wide class of short

rate models. However, since the tree construction starts with spanning a trinomial tree for Xt

by matching its moments, a simple choice for the process Xt is appropriate. When calculating

examples in Section 3, we will therefore focus on a Gaussian specification for Xt.

To illustrate the generality of the above short rate specification, we briefly discuss a few

possible models. We start with affine term structure models. These are obtained by setting

rt = a+bXt. If Xt follows a mean-reverting Ornstein-Uhlenbeck process with µX(Xt) = −κXt

and σX(Xt) = σ, then

drt = (aκ − κrt)dt + bσdWt, (2)

which corresponds to the short rate model of Vasicek (1977). With time-dependent parameters

equation (2) is often referred to as the extended-Vasicek model of Hull and White (1994). When

µX(Xt) = θ − κXt and σX(Xt) = σ
√

Xt, and b > 0, we get

drt = (θ̄ − κrt)dt + σ
√

b(rt − a) dWt, (3)
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with θ̄ = bθ + aκ. Setting a = 0 we obtain the classical Cox, Ingersoll, and Ross (1985) term

structure model. A lognormal model would be obtained by setting σX(Xt) = σXt.

Suppose now that rt = a + bXt + cX2
t . Such a specification defines a short rate model

which belongs to the class of quadratic models.2 As a specific example of the quadratic class

with Gaussian state variable Xt, take rt = cX2
t . Then, with µX(Xt) = θ − κXt the interest

rate process becomes

drt =
(

cσ2 + 2
(√

cθ
√

rt + κrt

))

dt + 2
√

cσ
√

rtdWt. (4)

As a special case of the dynamics in (4), we can obtain a parameterized version of the Cox,

Ingersoll, and Ross (1985) model, namely by setting θ = 0. As another special case of the

dynamics in (4) arises the double square-root interest rate model of Longstaff (1989), and

Beaglehole and Tenney (1992). These authors investigate a one-factor model with the short

rate process given as

drt = κ̂

(

σ̂2

4κ̂
−√

rt

)

dt + σ̂
√

rtdWt,

for some parameters κ̂, σ̂. It fits into our framework by setting κ = 0, θ = − 1
2

√
a and

σ = 1
2 σ̂/

√
a in (4).

In lognormal term structure models, the short rate is of the form rt = exp(a + bXt). A

popular example is the Black and Karasinski (1991) model, which is a generalization of the
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continuous-time formulation of the Black, Derman, and Toy (1990) model. The Black and

Karasinski (1991) model assumes the logarithm of the interest rate to evolve according to

d ln rt = (θt − κt ln rt) dt + σtdWt. (5)

To obtain the process in (5) we have to set rt = exp(at + btXt) with Xt following a normal

distribution.3

2. State Variable Tree

The standard procedure to construct a trinomial tree approximation of the short rate process

is to start spanning a tree for the state variable Xt on an equidistant tree. The process

Xt is assumed to follow a time-homogeneous stochastic differential equation (SDE). Then, a

tree representation can be constructed to provide a discrete-time and discrete-space Markov

approximation for Xt. Usually, a trinomial tree is preferred to a binomial tree approximation,

since the additional flexibility provided by the trinomial tree can be used to match not only

the first, but also the second moment of the process Xt.

We make the following notational conventions. The nodes of the trinomial tree are denoted

by (i, j), where i is the vertical placement (the space axis) and j is the horizontal placement

(the time axis). We define by πk,h
i,j the probability by which the process moves form node (i, j)

to node (i + k, j + h) within time interval h. For the standard branching process in the Hull

and White (1994) model, it is assumed that a) the time interval h is constant for the whole

tree, and b) the jump k is either 1, 0, or −1. Hence, the transition from a node (i, j) to nodes
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{(i− 1, j + 1), (i, j + 1), (i + 1, j + 1)} are equidistant both on the time as well as on the space

axis. Furthermore, it is assumed that the nodes (i, j) and (i, j +1) remain on the same vertical

level. This branching process is illustrated in Panel (A) of Figure 2 and the resulting trinomial

tree structure is illustrated in Figure 1. Having fixed the tree geometry, we have to determine

the tree probabilities in such a way that the distributional properties of the state variable are

mimicked at every node. However, instead of matching the variance as in Hull and White

(1994), we match the second moment. This gives the same result, but simplifies the formulas

somewhat. For the branching process given in Panel (A) of Figure 2, the system of equations

is given by

1 = π−1,1
i,j + π0,1

i,j + π1,1
i,j ,

E(Xj+1|Xi,j) ≡ M1 = δ(π1,1
i,j − π−1,1

i,j ) + Xi,j , (6)

E(X2
j+1|Xi,j) ≡ M2 = π−1,1

i,j (Xi,j − δ)2 + π0,1
i,j X2

i,j + π1,1
i,j (Xi,j + δ)2 ,

which is linear in the probabilities and hence straightforward to solve. In order to guarantee

that the threesome {π−1,1
i,j , π0,1

i,j , π1,1
i,j } can be interpreted as probabilities for all i’s, we have

to guarantee π−1,1
i,j + π0,1

i,j + π1,1
i,j = 1 together with the three inequality constraints {π−1,1

i,j ≥

0, π0,1
i,j ≥ 0, π1,1

i,j ≥ 0}. This can be done in several different ways. First, we can build some

constraints on the number of time steps we are considering. However by doing so, we impose

some severe restrictions on the depth of the tree. This method would probably fail to value

either derivatives with complex payoff structures or long term instruments with intermediate

payoffs, since such instruments require a reasonable depth for the tree. Another possibility is

to relax the assumptions that the trinomial tree evolves to the neighbor states. In this case an
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Figure 1. Trinomial Tree. The tree starts at note (0, 0). At each node there is a threesome
{π−1,1

i,j , π0,1
i,j , π1,1

i,j } evolving to the neighbor nodes (i − 1, j), (i, j), and (i + 1, j) respectively.

equation system with six variables and three equality constraints has to be solved. Thus, to

uniquely select a particular threesome of transitions, we would have to impose some additional

constraints. An alternative way to treat negative probabilities is by considering them as a

finite difference scheme applied to the basic pricing PDE. In such a case we do not need the

weights (probabilities) to be positive as soon as a specific finite difference scheme converges to

the solution of the PDE.4

A more serious problem, in particular for Gaussian interest rate models, is the possibility

of obtaining negative interest rates. As was done e.g. in Hull and White (1994), this can be

avoided by altering the geometry of the tree. Of course, altering the geometry is an arbitrary

manipulation of the pricing problem and thus subject to some criticism. Nevertheless, it is

widely used in practice. An obvious way to avoid negative interest rates is to use the branching

process illustrated in Panel (C) of Figure 2. At the same time, the branching process in

7



(A) (B) (C)

�
�

�
�

�
�

�
�

�
��

-(i,j)

(i+1,j+1)

(i,j+1)

(i−1,j+1)

@
@

@
@

@
@

@
@

@
@R

@
@

@
@

@
@

@
@

@
@R

(i,j)
-

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AAU

(i−2,j+1)

(i−1,j+1)

(i,j+1) �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

-�
�

�
�

�
�

�
�

�
��

(i+2,j+1)

(i+1,j+1)

(i,j+1)(i,j)

Figure 2. Branching Processes. In order to control the state spanned by the tree, the common
branching processes (A) is altered to either (B) for high interest rates, or (C) for low interest
rates. With the latter branching processes, negative interest rates within the tree can be
avoided.

Panel (B) would avoid the possibility that the trinomial tree spans interest rates, which are

unreasonably high. Depending on the branching process used, the system of equations for the

tree probabilities in (6) has to be adjusted accordingly. However, we do not necessarily have

to rely on the assumption that the tree evolves to the three neighboring states. We can be

more general in two directions:

• The tree evolves from state (i, j) to the three states {(i + k1, j + 1), (i + k2, j + 1), (i +

k3, j + 1)}, requiring k1 6= k2 6= k3.

• The tree directly evolves from state (i, j) to a threesome of states at time j + h, h ≥ 1.
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With these two generalizations, the equations to match the first two moments are given by

Mh
1 = Xi,j + δ

(

πk1,h
i,j k1 + πk2,h

i,j k2 + πk3,h
i,j k3

)

,

Mh
2 = πk1,h

i,j (Xi,j + k1δ)
2 + πk2,h

i,j (Xi,j + k2δ)
2 + πk3,h

i,j (Xi,j + k3δ)
2.

In this general setup, we then obtain

πk1,h
i,j =

Mh
2 − (2Xi,j + δ(k2 + k3)) Mh

1 + (Xi,j + δk2) (Xi,j + δk3)

δ2(k1 − k2)(k1 − k3)
,

πk2,h
i,j =

Mh
2 − (2Xi,j + δ(k1 + k3)) Mh

1 + (Xi,j + δk1) (Xi,j + δk3)

δ2(k2 − k1)(k2 − k3)
,

πk3,h
i,j =

Mh
2 − (2Xi,j + δ(k1 + k2)) Mh

1 + (Xi,j + δk1) (Xi,j + δk2)

δ2(k3 − k1)(k3 − k2)
.

With these formulas for the probabilities at hand, we can construct a large structure of possible

tree geometries. One possible structure of a generalized trinomial tree is plotted in Figure 3.

Obviously, there are many degrees of freedom for building a trinomial tree. In general however,

the more degrees of freedom, the less stable will the tree be when it comes to pricing derivatives.

Therefore, one has to be careful, as in most cases flexibility comes at the price of less stability.

3. Calibrating the Tree

In practice, term structure models are implemented by calibrating them to the prices and

volatilities of some subset of traded instruments. These instruments include e.g. US T-bonds,

interest rate swaps and interest rate options like caps and swaptions. Typically, the drift of

the short rate process is matched to the current term structure of bond prices. In Section 3.1
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Figure 3. Possible tree structure. For high and for low values of X we slow down the tree.
Furthermore, in the last two branches we use the alternative branching processes as illustrated
in Figure 2.

we present a novel method to achieve this goal. In a second step, the volatility function of the

short rate may then be chosen to match the term structure of volatilities of the yield curve, or

the term structure of implied volatilities of at-the-money interest rate options. The latter is of

particular importance when it comes to pricing of exotic interest rate options. We elaborate

on this method in Section 3.2.

3.1. Matching Bond Prices Using Forward Measure

The common procedure for matching the tree to the term structure of bond prices is based on

forward induction as used by Hull and White (1994) and first proposed by Jamshidian (1991).
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This procedure obviously becomes computationally demanding for more involved functions

g(X, t). For completeness, we review this method in the Appendix.

In this section, however, we use a novel approach that builds on the use of the forward

measure. Matching can be done analytically for a wide range of short rate models. Thus, com-

pared to the analytical implementation of the Hull-White model recently proposed by Grant

and Vora (2001), our procedure is not restricted to the extended Vasicek model. An additional

advantage of our method is that we can directly match the tree to the discretely discounted

forward rates, which is a more natural approach than matching to the instantaneous short

rate. But most importantly, since we entirely circumvent the forward induction procedure,

our method is significantly much more efficient. To this end, we exploit two properties of the

forward measure:

Property 1 Under the forward measure the forward rate is an unbiased estimator of the future

interest rate.

The first property allows us to match the tree in a straightforward manner and, moreover,

the level shift is given in closed-form for a wide range of term structure models. Consider, for

instance, the lognormal model of Black and Karasinski (1991). In the Hull-White framework,

the tree matching procedure under lognormal short rates requires the use of a root search

algorithm, which needs to be applied in every time slice of the tree. In our approach however,

the level shift can be determined analytically for a large class of term structure models.

Property 2 In discrete time the one-period forward measure equals the risk-neutral measure.
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From the second property it follows that the backward induction to determine derivative prices

remains the same as in the standard trinomial tree. Therefore, no further adjustments have

to be made and prices can be calculated the same way as with a tree spanned under the

risk-neutral measure.

Changing the probability measure to the forward measure is a common tool in pric-

ing derivative instruments, as it considerably facilitates the calculation of the corresponding

expectation.5 Suppose that
∫ T

0 g(X, s) ds < ∞. Then, the T -forward measure P
T is defined by

dP
T

dP |FT

=
exp

(

−
∫ T

0 g(X, s) ds
)

E

[

exp
(

−
∫ T

0 g(X, s) ds
)] = P (t, T )−1 exp

(

−
∫ T

0
g(X, s) ds

)

.

Then, as stated in Property 1, we have

E
T (rT | Ft) = f(t, T ),

where E
T is the expectation operator under the T -forward measure. As it is more natural

to work with simple compounded interest rates (e.g. LIBOR rates), we denote by f ?
∆(T ) =

(P (T )/P (T + ∆) − 1) /∆ the annualized, discrete time forward rate prevailing at time [T, T +

∆] as observed from the initial term structure. In order to match the initial term structure,

we have to insure that

E
T (rT | Ft) = E

T (g(X, T ) | Ft) = f?
∆(T ),

12



holds for each time step in the trinomial tree. How can this be achieved? Up to now, we have

constructed the tree for X, such that for every time step the conditional expectation of ∆X is

matched under the risk-neutral measure. Therefore, the probabilities πk,h
i,j are P-probabilities.

Note that, in discrete time, the one-period forward measure equals the risk-neutral measure (see

Property 2). So far, however, we did not yet have specified the measures of path probabilities

for more than one period. This additional degree of freedom will be used to efficiently match

the tree to the initial term structure. How this can be achieved will be discussed next.

Given the appropriate technical conditions, the extended generator of Xt under P
T following

the SDE in (1) can be written as

LT g = Lg + Γ(log P (t, T ), g),

where Γ is the “carré du champ operator” corresponding to L (see Davis (1998)), defined as

Γ(f, g) = L(fg) − gLf − fLg, f, g ∈ D(L).

This means that in continuous time, the drift of the process dXt is changed from µ(Xt) to

µ(Xt) − σ(Xt)
∂

∂X
log P (t, T ) under the forward measure P

T :

dXt =

(

µ(Xt) − σ(Xt)
∂

∂X
log P (t, T )

)

dt + σX(Xt)dW T
t

= (µ(Xt) − v(X, t, T )) dt + σX(Xt)dW T
t , (7)

13



where v(X, t, T ) is the instantaneous volatility of the bond price process dP (t, T )/P (t, T ), and

W T is the standard Brownian motion under the measure P
T .

Now, the level shift of the original tree can be determined as follows. Using continuous

time notation, we need to find a level shift, such that the forward rate is an unbiased estimate

of the future interest rate, i.e.

E
T (g(X, T ) | Ft) = f(t, T ),

where

dE
T [g(X, T ) |Ft ]

dt
= E

T
[

LT g(X, T ) |Ft

]

= E [Lg(X, T ) + Γ(log P (t, T ), g(X, T )) |Ft ] .

Thus,

f(t, T ) = f(t, t) +

∫ T

t

E [Lg(X, s) + Γ(log P (s, T ), g(X, s)) |Ft ] ds

= E [g(X, T ) |Ft ] +

∫ T

t

E [Γ(log P (s, T ), g(X, s)) |Ft ] ds (8)

= E
T [rT |Ft ] ,

subject to g(X, t) = f(t, t) = rt. In order to match the tree, we therefore alter the original tree

for the Markov process X in the following way:

14



• At each time slice, we change the level of the tree for g(X, t) by a function η(t, T, X)

defined by

η(t, T, X) =

∫ T

t

E [Γ(log P (s, T ), g(X, s)) |Ft ] ds. (9)

• The tree for rt is now spanned under forward probability measures. At time step j,

we have E
j∆ [rj∆|F0] = f(0, j∆) under measure P

j∆. The one period forward measure

equals the risk-neutral probability measure.

To further clarify our point, we next discuss a three examples: the extended-Vasicek model,

the lognormal model, and the quadratic model. We start by discussing the extended Vasicek

model. Assuming

dXt = −κXtdt + σdWt, X0 = 0, (10)

we fix the initial date to 0. We define the function g(X, t) = g(Xt) = Xt. Since in the extended

Vasicek model, the volatility of the bond price process is a function of time only, we can write

the forward rate in (8) as

f(t, T ) = E [g(XT ) |Ft ] + η(t, T ).

Then, according to equation (9), the level shift at time t = 0 becomes

η(0, ∆) = f?
∆(∆) − E (X0 | F0) = f?

∆(∆).

The first level shift is just zero, since f ?
∆(∆) = r0. For the next time-step, [∆, 2∆], we simply

obtain

η(0, 2∆) = f?
∆(2∆).
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Obviously, we do not have to make any tedious calculations at all. The level shift at time step

(j − 1)∆ is simply given by

η(0, j∆) = f?
∆(j∆). (11)

Finally, we can determine the measure change dP
T /dP as

dP
T

dP |FT

= exp

(

∫ T

0

∂η(u, T )

∂T
dWu − 1

2

∫ T

0

(

∂η(u, T )

∂T

)2

du

)

.

Since the derivation of the bond price is a straightforward task, the PT -dynamics of Xt in

equation (7) are explicitly obtained as

dXt =

(

e−κ(T−t) − 1

κ
σ2 − κXt

)

dt + σdW T
t , X0 = 0, (12)

Indeed, whenever we have an affine term structure model, where bond prices allow the repre-

sentation

P (t, T ) = exp (A(t, T ) + B(t, T )rt) ,

the change of measure is

dP
T

dP |FT

= exp

(

∫ T

0
B(u, T )

∂g(X, u)

X
σ(X)dWu − 1

2

∫ T

0

(

B(u, T )
∂g(X, u)

X
σ(X)

)2

du

)

.

As was already pointed out in Kijima and Nagayama (1994) and Pelsser (1994), the level shift

can be calculated analytically for the Vasicek model. They argue that the level shift equals

the expected value of the future interest rate. Thus, there is no forward induction necessary.

Hull and White (1996) object that this procedure does not provide an exact fit to the initial
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term structure, because the tree is a discrete time representation of an underlying continuous

process. Hence, the tree is only fitted exactly using the forward induction procedure, which

would justify the additional computational costs. Here, however, we calculate the expected

value under the forward measure to determine the level shift for the one-period forward rate,

which equals the discretized short rate. Hence, the tree is matched exactly to the initial term

structure, while saving considerable amount of computation time.

We next turn to the lognormal models. Here, the advantage of our matching procedure

becomes most evident, since we can match the initial term structure by using a closed-form

expression. Using forward induction would require a root search algorithm in every time slice

(see Hull and White (1994)). Again, we assume dXt as given in equation (10), but now with

rt = aeXt . The short rate becomes lognormally distributed with expectation

E [rT |Ft ] = a exp
(

Xte
−κ(T−t)

)

+ a exp

(

σ2

2κ

(

1 − e−2κ(T−t)
)

)

.

Therefore, for the tree centered at X0 = 0, and with fixed κ and σ,

r0 = f?
∆(∆) = a + a exp

(

σ2

2κ

(

1 − e−2κ∆
)

)

determines the constant a. Then, to match the whole term structure, we have to introduce a

level shift given by

η(0, j∆) = f?
∆(j∆) − a − a exp

(

σ2

2κ

(

1 − e−2κj∆
)

)

17



to determine the level shift at the (j − 1)∆-th time step. Again, we recall that with the

standard Hull and White (1994) procedure one would have to perform a root search algorithm

for each time step in order to determine the level shift for matching the tree with lognormal

interest rates.

As a final example emphasizing the advantage of our procedure, we consider the general

quadratic model as in Ahn, Dittmar, and Gallant (2002) and Leippold and Wu (2002). With

the parameters a, b, c such that rt = a + bXt + cX2
t > 0, we can span an interest rate tree

with strictly positive interest rates. Again, we restrict ourselves to choosing Xt as a simple

Ornstein-Uhlenbeck process given in equation (10). Then, calculating the expected short rate,

we first have to fix the constants a and c such that

r0 = f?
∆(∆) = a + ce−2κ∆ σ2

2κ

(

eκ∆ − 1
)

Without loss of generality, we set c = 1. Then, to match the entire initial term structure, the

level shifts for j > 1 can readily be calculated as

η(0, j∆) = f∗(j∆) − a − e−2κj∆ σ2

2κ

(

e2κj∆ − 1
)

. (13)

3.2. Calibrating to the Term Structure of Volatilities

In this section, we show how the trinomial tree can be fitted in an efficient way to the initial

term structure of volatilities. Calibrating the volatility structure is often subject to some

criticism. Hull and White (1996) suggest that in a Markov model there should be only one time-
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dependent parameter. Whenever the volatility is modelled as time-dependent, the resulting

non-stationarity in the volatility curve may have many unexpected effects. In particular, any

instrument whose price depends on future volatilities is liable to be mispriced.

Before we start discussing, how the trinomial tree can be manipulated to match the volatil-

ity structure, we next explore the theoretical underpinning of calibrating the volatility. First,

note that in the previous section we introduced a measure change to determine the level shift

for the interest rate tree. An absolutely continuous change of measure only affects the drift of

the process, but the quadratic variation will not be affected. Hence, for the tree construction,

it is more appropriate to first match the volatility and then match the forward rate curve.

To alter the diffusion coefficient, we have to introduce a time change.6 As we are only

considering a deterministic time change, we can use the following result.

Lemma 1 Consider the continuous time-dependent functions c(t) > 0 and τ(t) =
∫ t

0 c(s)−1ds ≥

0. Define

W̃t =

∫ τ(t)

0

√

c(s)dWs.

Then W̃t is a Fτ(t)-Brownian motion. Further,

∫ τ(t)

0
dWs =

∫ t

0

√

∂sτ(s)dW̃s. (14)

As can be seen from equation (14), the time-changed Brownian motion alters the volatility

of the original Brownian motion. Hence, this technique offers a convenient tool to match the

trinomial tree to the term structure of volatilities.
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In the previous section, where we matched the tree to the forward rate curve only, we

implicitly assumed τ(t) = t and hence, c(t) = 1. By introducing the time change, we now

construct a tree for the new process

dXt = µX(X)dt + σ̃X(X, t)dW̃t, (15)

where σ̃X(X, t) = σX(Xt)
√

∂tτ(t). Since we use now the process (15), care has to be taken

when matching to the initial forward rate curve. The results in the previous section have to be

adjusted accordingly. We will show below, how this can be achieved in an efficient manner. The

introduction of a deterministic clock for volatility matching was already introduced in Schmidt

(1997). Contrary to Schmidt (1997), we do not change the length of the interval between

subsequent time-steps to fit this concept into our trinomial framework. Instead, we adjust the

jump size in each time step in such a way that the tree probabilities remain unchanged. Hence,

the jump size δ is becoming a function of time and we denote it as δj .

Assume now that we want to calibrate our interest rate tree to the term structure of forward

rate volatilities.7 We further assume that we are given a set of one-period forward volatilities

denoted by V ?(j∆). To determine the tree, we have to find a σX(X, t), such that

V ?(j∆) = var (g(j∆, j∆) | Ft) = var (rj∆ | Ft)

20



holds. This is achieved by adjusting the system of equations for the tree probabilities. Note

that the probabilities now become time dependent. Restricting ourselves to h = 1 and k =

{−1, 0, 1}, we obtain

1 = π−1,1
i,j + π0,1

i,j + π1,1
i,j ,

M1 = δj(π
1,1
i,j − π−1,1

i,j ) + Xi,j ,

M2 = π−1,1
i−1,j (Xi,j − δj)

2 + π0,1
i,j X2

i,j + π−1,1
i,j (Xi,j + δj)

2 ,

V ?(j∆) = var (g(Xi,j , j∆)|Xi,j) .

Whenever Xt is Gaussian, the tree will still be centered at zero. Hence, the level shift to be

applied at each time-step is determined as in the previous section.

3.3. Numerical Examples

As a first example we consider an affine and a quadratic term structure model based on a

Gaussian state variable Xt.
8 We assume that Xt follows the process

dXt = −0.2Xtdt + 0.1dWt.

We choose time steps as ∆ = 1. Furthermore, we set

δ =
√

3σ

√

1 − e−2κ∆

2κ
,
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for numerical reasons (see Hull and White (1994)). The initial term structure is assumed to

be given as

P ?(∆) = e−(0.08−0.05e−0.18∆)∆. (16)

Finally, we set

g(X) =
1

2
Xt,

for the affine Gaussian model and

g(X) =
1

2
Xt + X2

t ,

for the quadratic Gaussian model. We match the tree using the procedure outlined in Section

3.1. Then, for the short rate, the matching procedure is given by equation (11). Hence, the

middle node for each time slice is shifted upwards according to the prevailing forward rate.

For the quadratic term structure model, the level shift is given by equation (13). The upward

shift by the forward rate has to be adjusted by a correction term. This correction term can be

calculated in closed form for the quadratic model. As already pointed out, it can be calculated

in closed form for any model which allows a closed-form expression for E
T [g(Xt) |Ft ]. If such

a closed-form expression is not available however, the calculation of this correction term can

be done numerically using the path-probabilities in the tree, since for T = j∆,

E
T [g(Xt) |Ft ] ≈

∑

i

Π(i, j∆)Xi,j ,

where by Π(i, j∆) we denote the sum of all path probabilities leading to state (i, j). Certainly,
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Figure 4. Trinomial trees for an affine (upper panel) and a quadratic (lower panel) Gaussian
term structure model. The affine model leads to negative interest rates, when no alternative
branching processes are introduced. The Gaussian model has only positive interest rates. To
avoid to high interest rates for this model, we introduced the alternative branching process
(B) from Figure 2.
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using such a numerical procedure to determine the level shift comes at an additional computa-

tional cost. Nevertheless, we think that this cost is minor compared to that of using a forward

induction method involving a root-search algorithm to match the tree to the term structure.

The corresponding trees are plotted in Figure 4 for the affine model (upper panel) and the

quadratic model (lower panel). As one can observe, the matching procedure gives rise to time

dependent shifts of the original symmetric tree spanned for X. Furthermore, the disadvantage

of using the affine tree is that negative interest rates are produced. One could now alter the

geometry of the tree as outlined in Section 2. For more on alternative branching processes

and its implementation in Mathematica we refer e.g. to Leippold and Wiener (1999). Another

possibility to avoid negative interest rates is altering the function g(Xt), e.g. by assuming this

function to be quadratic in Xt. The trinomial tree for such a choice is plotted in the lower

panel of Figure 4. Clearly, the short rate is not becoming negative. Note that the matching

of this tree comes at almost no computational cost, as the shift is available in closed-form (see

equation (13)). Also recall that, so far, we have spanned the tree under the forward measure

and not under the risk-neutral measure.

Pricing European claims is a straightforward task. Under the forward measure, the time-t

price Vt of a European claim with payoff VT at expiration time T , we have

Vt = P ?(T )ET [VT |Ft ] .

Thus, when using the tree for valuation, we only need to discount the payoffs at T with the

appropriate discount factor, i.e. the appropriate (and observable) bond prices. The same is true

for all other path-independent options, which can be decomposed into a portfolio of European
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Tree Depth Gaussian Lognormal
Analytical Value Tree Value Tree Value

absolute relative absolute relative∗

10 4.14431 4.14346 -0.0206 % 4.15055 -0.0109 %
50 4.14431 4.14411 -0.0048 % 4.15018 -0.0019 %
100 4.14431 4.14422 -0.0021 % 4.15014 -0.0010 %
150 4.14431 4.14425 -0.0015 % 4.15012 -0.0006 %
200 4.14431 4.14427 -0.0011 % 4.15011 -0.0004 %
250 4.14431 4.14428 -0.0008 % 4.15011 -0.0003 %
300 4.14431 4.14429 -0.0007 % 4.15011 -0.0003 %
500 4.14431 4.14429 -0.0005 % 4.15010 -0.0001 %
1000 4.14431 4.14430 -0.0002 % 4.15010 -0.0000 %

Table 1

One-year Put option on a three-year zero bond with face value 100. Strike price is 93.5. We
set g(Xt) = Xt and dXt = −0.2Xtdt + 0.01dWt. The tree was matched to the initial term
structure using the procedure from Section 3.1. In case of the Gaussian model the relative
approximation error was calculated relative to the closed-form solution. For the lognormal

model, the deviations are relative to the tree value with depth 1000.

options. Even the calculation of American options is straightforward and the usual recursion

method can be applied. Since in the current discrete time setting, the one-period forward

measure equals the risk-neutral probability measure, we can determine American option prices

by recursively working through the tree.

We end this section by comparing our numerical procedure with an analytical formula for

bond options. In Table 1 we checked convergence of a European put option on a zero bond with

face value 100, when interest rates follow either a Gaussian process or a lognormal process,

i.e. g(Xt) = Xt and g(Xt) = eXt respectively. We assume that the put option matures in one

year and is written on a zero maturing in three years. We further assume g(Xt) = Xt and

dXt = −0.2Xtdt + 0.01dWt. The initial term structure is given by (16). The strike price is

set equal to 93.5. The trinomial tree is spanned under the forward measure. For the Gaussian

model, we can compare the tree prices with the analytical formula. For the lognormal model
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we calculated the relative deviation with respect to the model value obtained by a trinomial

tree of depth 1000. It turns out that the trinomial tree spanned under the forward measure

converges to the true value as expected. Its convergence is comparable with the standard

trinomial trees, but again, we emphasize that our matching procedure is not only much more

efficient, but also more flexible.

4. Conclusion

In this paper, we elaborated on some extensions and generalizations of the traditional trinomial

tree models for interest rates. We furthermore showed how the tree matching procedure can

be reformulated in a much more efficient way. Our approach is based on the forward measure

methodology. For a large group of term structure models, this allows us to determine the

level shifts in closed-form. Hence, our approach simplifies and considerably improves current

practice. Furthermore, it is robust in the sense that it can still be applied when the tree is also

required to match the term structure of volatilities.
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Appendix

Matching by Forward Induction

Consider a trinomial tree with starting point (0, 0). All quantities are expressed as annualized quantities.

One year is partitioned into subperiods of length ∆. To simplify the subsequent analysis, we will consider

standard branching processes only and set h = 1 and k ∈ {−1, 0, 1}.

Today’s one-period bond price P ?(∆) is assumed to be known, i.e. extracted from the market

quotes by some estimation procedure. Then,

P ?(∆) = e−r0,0∆,

with ri,j the annualized, continuously compounded short rate in state (i, j) prevailing over the time

period [j∆, (j+1)∆]. Before considering the second time step, we introduce the concept of a state-price.

The state-price is denoted by Qi,j . In the following, the state-price Qi,j can be thought of today’s price

of a security that pays exactly $1 if state (i, j) occurs, and $0 in every other state. Then, Q0,0 = 1 and

in the standard trinomial tree we have

P ?(j∆) =

j
∑

i=−j

Qi,j . (A.1)

Now, moving from time ∆ to 2∆, we observe the following9:

P ?(2∆) = e−r0,0∆
(

π1e
−r1,1∆ + π0e

−r0,1∆ + π
−1e

−r
−1,1∆

)

.
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For large j, it would be rather cumbersome to write this up. Using the state-price formulation, we can

considerably simplify the above procedure by writing the bond price as

P ?(2∆) =

2
∑

i=−2

Qi,2 =

1
∑

i=−1

Qi,1e
−ri,1∆.

The Qi,∆ have still to be determined. This is achieved by forward induction. We know Q0,0 = 1 and

r0,0. So, for the next time-step

Qi,1 = πie
−r0,0∆.

Generalizing the above procedure, the bond price P ?((j + 1)∆) can be written as

P ?((j + 1)∆) =

j
∑

i=−j

Qi,je
−ri,j∆.

This form is much more amenable for determining the level shift needed to match the term structure.

Once the interest rate at time-slice j is determined by matching the tree, the state-prices for the

subsequent time step can be calculated as

Qi,j+1 =
∑

m

Qm,jπme−rm,j ,

where m is determined by the paths leading to node (i, j + 1). For now, we are still lacking a piece.

Recall rt = g(Xt, t) and consider now, e.g. the function rt = g(αt +Xt) with αt a deterministic function

of time. Then,

P ?((j + 1)∆) =

j
∑

i=−j

Qi,je
−g(αj+xi,j)∆.
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To determine the level shift αj , we have to invert the above relation. For illustration, consider the affine

function rt = αt + βXt. Hence, we obtain

αj =
1

∆
log





j
∑

i=−j

Qi,je
−βxi,j∆



− log P ?((j + 1)∆)

∆
(A.2)

Note, the above procedure implicitly assumes the π’s to be probabilities under the risk-neutral measure.

Therefore, when pricing claims using the matched tree, one should recall that the tree is spanned under

the risk-neutral measure.
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Notes

1The extended generator of the process X is defined as L = ∂

∂t
+ ∂

∂X
µX(X) + 1

2

∂

∂X2 σ2

X(X), see e.g. Arnold

(1974), p. 180.

2General quadratic term structure models have been discussed by Ahn, Dittmar, and Gallant (2002), Leippold

and Wu (2002).

3Such dynamics for the short interest rate would lead to infinite prices for Eurodollar futures as shown by

Hogan and Weintraub (1993). Nevertheless, the Black and Karasinski (1991) model is one of the most popular

models used in practice.

4We thank Ton Vorst for this remark.

5See e.g. Jamshidian (1989), Geman, El Karoui, and Rochet (1995), Benninga, Björk, and Wiener (2002)

6See e.g. Durrett (1996)

7Typically, they are either estimated historically or determined by at-the-money interest rate derivatives

such as caps or swaptions.

8We implemented the models in Mathematica. The files can be obtained from the authors on request.

9Since in this simple setup probabilities are not time dependent, we just simplify the notation to πi.
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