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Value-at-Risk (VaR)
The authors describe how to implement VaR, the risk measurement
technique widely used in financial risk management.

by Simon Benninga and Zvi Wiener

I n this article we discuss one of the modern risk-
measuring techniques Value-at-Risk (VaR). Mathemat-
ica is used to demonstrate the basic methods for cal-

culation of VaR for a hypothetical portfolio of a stock and
a foreign bond.

VALUE-AT-RISK
Value-at-Risk (VaR) measures the worst expected loss un-
der normal market conditions over a specific time inter-
val at a given confidence level. As one of our references
states: “VaR answers the question: how much can I lose
with x% probability over a pre-set horizon” (J.P. Mor-
gan, RiskMetrics–Technical Document). Another way of
expressing this is that VaR is the lowest quantile of the
potential losses that can occur within a given portfolio
during a specified time period. The basic time period T
and the confidence level (the quantile) q are the two ma-
jor parameters that should be chosen in a way appropriate
to the overall goal of risk measurement. The time horizon
can differ from a few hours for an active trading desk
to a year for a pension fund. When the primary goal is
to satisfy external regulatory requirements, such as bank
capital requirements, the quantile is typically very small
(for example, 1% of worst outcomes). However for an
internal risk management model used by a company to
control the risk exposure the typical number is around
5% (visit the internet sites in references for more details).
A general introduction to VaR can be found in Linsmeier,
[Pearson 1996] and [Jorion 1997].

In the jargon of VaR, suppose that a portfolio manager
has a daily VaR equal to $1 million at 1%. This means that
there is only one chance in 100 that a daily loss bigger
than $1 million occurs under normal market conditions.

A REALLY SIMPLE EXAMPLE
Suppose portfolio manager manages a portfolio which
consists of a single asset. The return of the asset is nor-
mally distributed with annual mean return 10% and annual
standard deviation 30%. The value of the portfolio today is
$100 million. We want to answer various simple questions
about the end-of-year distribution of portfolio value:

1. What is the distribution of the end-of-year portfolio
value?

2. What is the probability of a loss of more than $20

million dollars by year end (i.e., what is the probability
that the end-of-year value is less than $80 million)?

3. With 1% probability what is the maximum loss at the
end of the year? This is the VaR at 1%.

We start by loading Mathematica ’s statistical package:

Needs["Statistics‘Maste r‘" ]
Needs["Statistics‘Multi Descri ptive Statis tics‘" ]

We first want to know the distribution of the end-of-
year portfolio value:

Plot [PDF[NormalDistribu tion [110,30 ],x ],{ x,0,20 0} ];
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The probability that the end-of-year portfolio value is
less than $80 is about 15.9%.

CDF[NormalDistribution [110.,3 0],80 ]

0.158655

With a probability of 1% the end-of-year portfolio value
will be less than 40.2096; this means that the VaR of the
distribution is 100 - 40.2096 = 59.7904.

Quantile [NormalDistribu tion [110.,3 0],0.0 1]

40.2096

We can formalize this by defining a VaR function which
takes as its parameters the mean mu and standard devia-
tion sigma of the distribution as well as the VaR level x.

ClearAll [VaR];
VaR[mu_,sigma_,x_ ]:=

100-Quantile [NormalDis tribut ion [mu,sigm a],x ]
VaR[110,30,0.01 ]

59.7904
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LOGNORMAL DISTRIBUTIONS
As explained in our previous articles, the lognormal dis-
tribution is a more reasonable distribution for many asset
prices (which can not become negative) than the normal
distribution. This is not a problem: Suppose that the natu-
ral logarithm of the portfolio value is normally distributed
with annual mean m and annual standard deviation s. De-
noting the value of the portfolio by v it follows that the
logarithm of the portfolio value at time T , vt , is normally
distributed:

Log[vT ] ~ Normal CLog[v] + Km -
s2

2
O T , s T G

The term s2

2 T appears due to Ito’s Lemma (see [Hull
1997]). In our case, this means that v = 100, m = 10%,
s = 30%. Thus the end-of-year log of the portfolio value is
distributed NormalDistribution [ Log[ 100 ] +
(0.1-0.3ˆ2/2 ), 0.3 ] = NormalDistribution [
4.666017,0.3 ]. This means that the probability that
the end-of-year value of the portfolio is less than 80 is
given by:

CDF[NormalDistribution [Log[100]+
(0.1-0.3ˆ2/2 ),0.3 ],L og[80]]

0.176926

Similarly the VaR function has to be redefined:

ClearAll [lognormalVaR ];
lognormalVaR [mu_,sigma_ ,x_ ]:=

100-Exp [Quantile [NormalDist ributi on[
Log[100]+(mu-sigmaˆ2/2 ),sigma ],x ]];

lognormalVaR [0.10,0.30, 0.01 ]

47.4237

Thus a portfolio whose initial value is $100 million and
whose annual returns are lognormally distributed with
parameters mu = 10% and sigma = 30%, has an annual
VaR equal to $47.42 million at 1%.

Most VaR calculations are not concerned with annual
value at risk. The main regulatory and management con-
cern is with loss of portfolio value over a much shorter
time period (typically several days or perhaps weeks).
It is clear that the distribution formula Log[vT ] ~ Normal[

Log[v ] + (m - s2

2 )T , sT ] can be used to calculate the VaR
over any horizon. Recall that T is measured in annual
terms; if there are 250 business days in a year, then the
daily VaR corresponds to T = 1/250 (for many fixed in-
come instruments one should use 1/360, 1/365, or 1/365.25
depending on the market convention):

ClearAll [lognormalVaR ];
lognormalVaR [mu_,sigma_ ,x_,T_ ]:=100 -Exp [
Quantile [NormalDistribu tion [Log[100 ]+(mu-
sigmaˆ2/2 )*T,sigma*T ],x ]];
lognormalVaR [0.10,0.30, 0.01,1 /250 ]
lognormalVaR [0.10,0.30, 0.01,5 /250 ]
lognormalVaR [0.10,0.30, 0.01,2 1/250 ]

0.256831

1.27758

5.25717

The daily VaR of the portfolio at 1% is $256,831. The
probability that the firm will lose more than this amount
on its portfolio over the course of a single day is less than
1%. Similarly, the weekly and the monthly VaRs at 1% are
$1.28 and $5.26 million.

A THREE-ASSET PROBLEM: THE IMPORTANCE OF THE
VARIANCE-COVARIANCE MATRIX
As can be seen from the above examples, VaR is not–in
principle, at least–a very complicated concept. In the im-
plementation of VaR, however, there are two big practical
problems (both problems are discussed in much greater
detail in the material available on the J.P. Morgan Web
site):

1. The first problem is the estimation of the parameters of
asset return distributions. In “real world” applications
of VaR, it is necessary to estimate means, variances,
and correlations of returns. This is a not-inconsiderable
problem! In this section we illustrate the importance
of the correlations between asset returns. In the fol-
lowing section we give a highly-simplified example of
the estimation of return distributions from market data.
For example you can imagine that a long position in
Deutschmarks and a short position in Dutch guldens
is less risky than one leg only, because of a high prob-
ability that profits of one position will be mainly offset
by losses of another.

2. The second problem is the actual calculation of posi-
tion sizes. A large financial institution may have thou-
sands of loans outstanding. The data base of these
loans may not classify them by their riskiness, nor
even by their term to maturity. Or–to give a second
example–a bank may have offsetting positions in for-
eign currencies at different branches in different loca-
tions. A long position in Deutschmarks in New York
may be offset by a short position in Deutschmarks in
Geneva; the bank’s risk–which we intend to measure
by VaR–is based on the net position.

We start with the problem of correlations between asset
returns. We continue the previous example, but assume
that there are three risky assets. As before the parameters
of the distributions of the asset returns are known: all
the means: m1, m2, m3, as well as the variance covariance
matrix of the returns:

S =
ÊÁÁÁÁÁÁ
Ë

s11
s21
s31

s12
s22
s32

s13
s23
s33

ˆ̃
˜̃
˜̃
˜
¯

The matrix S is of course symmetric; sij is the covariance
of the returns of assets i and j (if i = j , s]ii is the variance
of asset i’s return).

Suppose that the total portfolio value today is $100
million, with $30 million invested in asset 1, $25 million
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in asset 2, and $45 million in asset 3. Then the return
distribution of the portfolio is given by:

mean return = x .m = x1m1 + x2m2 + x3m3

variance of return = x .S.xT ,
where x = {x1,x2,x3} = {0.3,0.25,0.45} is the vector of
proportions invested in each of the three assets. Assuming
that the returns are normally distributed (meaning that
prices are lognormally distributed), we may calculate the
VaR by:

Clear [x,S,means,portfol ioMean ,portf olioSi gma];
X=Table [x[i ],{i,3} ];
S=Table [sigma [i,j ],{i,3 },{j,3 } ];
means=Table [mu[i ],{i,3} ];
portfolioMean [X_,means_ ,initi al_ ]:=

X.means*initial ;
portfolioSigma [X_,s_,in itial_ ]:=

Sqrt [X.s.X ]*initial ;

To implement this:

Clear [VaR];
X={0.3,0.25,0.45} ;
means={0.1,0.12,0.13} ;
initial =100;
VaRlevel =0.01 ;
S={{0.1,0.04,0.03},{0.0 4,0.2, -0.04} ,

{0.03,-0.04,0.6}} ;
Print ["The portfolio mean = ",

portfolioMean [X,1 +means,initi al ] ]
Print ["The portfolio sigma = ",

portfolioSigma [X,S,init ial ]]

VaR[X_,s_,initial_,leve l_ ]:=
initial-Quantile [

NormalDistribution [
portfolioMean [X,means ,initi al ],
portfolioSigma [X,s,in itial ]],VaRl evel ]

Print ["The portfolio VaR at the ",
VaRlevel*100, "% level is ",

VaR[X,S,initial,VaRle vel ] ]

The portfolio mean = 111.85

The portfolio sigma = 38.4838

The portfolio VaR at the 1. % level is 177.677

USING EMPIRICAL DATA TO CALCULATE THE VAR
In this section we use market data to do some VaR cal-
culations. Our data consists of 40 business days of data
for a market index, foreign interest rates and foreign ex-
change rates. We use this data to do three kinds of VaR
calculations: Historic simulations, variance-covariance cal-
culations, and Monte Carlo simulations.

Data Description and Preliminary Calculations
We consider the VaR of a portfolio manager who has in-
vested in only two assets: A domestic stock index and a
foreign bond. For simplicity we assume that the value of
this portfolio is wholly determined by only several param-
eters:

Í The current price of the stock index

Í The foreign market interest rate (the bond is assumed
to have a zero coupon, so that only the interest rate

until the bond’s maturity determines its price in foreign
currency).

Í The time until the bond’s maturity; along with the for-
eign market interest rate, this will determine the bond’s
foreign currency price.

Í The exchange rate between the foreign and the domes-
tic currency.

We use historic price and return data to do our VaR
calculations. It is convenient to translate all dates to a nu-
merical format. We set January 1, 1997 to be day number
0 and then any day is given by a number of days since
the initial date (we assume that all days are business days
for simplicity).

Needs["Miscellaneous‘Ca lendar ‘" ];
Needs["Statistics‘Maste r‘" ]
Needs["Statistics‘Multi Descri ptive Statis tics‘" ]

Day0 ={1997, 1, 1} ;
dayN[ day_ ]:=DaysBetween [ Day0, day ];

Thus January 13, 1997 is the day number 12 and so on.

dayN[{1997, 1,13} ]

12

Consider February 10, 1997. Suppose that on February
10, 1997, the stock index value is 293., the foreign interest
rate is 5.3%, and the exchange rate is 3.4; February 10,
1997 is the 40th business day since January 1, 1997. Thus
we write the data for this day as a list: {40, 293., 5.3,
3.4}. Obviously any real market data must contain much
more information, however will use this simple example
to illustrate the VaR approach.

The whole data set with which we will be working is
the following (in a real-world situation, we would obvi-
ously use much more data about many more assets):

dataVAR ={
{1, 282., 5.28, 3.5},{2, 283., 5.26, 3.47},
{3, 285., 5.23, 3.46},{4, 280., 5.24, 3.45},
{5, 282., 5.25, 3.45},{6, 281., 5.24, 3.46},
{7, 282., 5.24, 3.45},{8, 286., 5.25, 3.43},
{9, 285., 5.25, 3.47},{10, 286., 5.26, 3.443},
{11, 288., 5.27, 3.42},{12, 289., 5.28, 3.42},
{13, 290., 5.28, 3.41},{14, 289., 5.28, 3.42},
{15, 291., 5.29, 3.46},{16, 293., 5.31, 3.41},
{17, 294., 5.32, 3.40},{18, 290., 5.34, 3.49},
{19, 287., 5.35, 3.47},{20, 288., 5.34, 3.48},
{21, 289., 5.35, 3.46},{22, 281., 5.36, 3.44},
{23, 283., 5.23, 3.45},{24, 285., 5.24, 3.42},
{25, 288., 5.25, 3.41},{26, 289., 5.26, 3.41},
{27, 287., 5.26, 3.43},{28, 285., 5.28, 3.42},
{29, 290., 5.27, 3.44},{30, 291., 5.27, 3.42},
{31, 289., 5.27, 3.37},{32, 288., 5.29, 3.39},
{33, 290., 5.28, 3.41},{34, 293., 5.31, 3.44},
{35, 292., 5.32, 3.41},{36, 293., 5.28, 3.42},
{37, 293., 5.30, 3.42},{38, 293., 5.31, 3.44},
{39, 292., 5.32, 3.41},{40, 293., 5.30, 3.4}} ;

Suppose that the financial institution holds two shares
of the stock index portfolio and a short position in a zero-
coupon foreign bond having face value 100 rubles with
maturity May 8, 2000. We represent this portfolio as a list:
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portfolio = { {STOCK,{}, 2},
{FBOND,{dayN [{2000, 5, 8} ]}, -1}}

Note that the empty paramters list in the stock part
means that there are no parameters and we always keep
the same portfolio of stocks. The list of parameters of the
bond part consists of one number - day of maturity. In
general both lists can have many parameters describing a
specific portfolio of stocks or bonds.

Risk Mapping
“Risk mapping” is a nice wording for a pricing function.
In a general case we might decompose the pricing func-
tion for each type of financial instrument into simple risk
factors (perhaps using the option pricing techniques ex-
plained in our previous articles). However, in our simple
example the current value of each instrument is a sim-
ple one-dimensional function of current market data. For
example, the price of the stock is just its market value
and the price of the bond is its discounted future pay-
off translated to a local currency according to the current
exchange rate.

Next, we define the pricing functions for the stock in-
dex and the foreign bond. Suppose we are given a list of
market data, market ={dayN [{1997,3,6} ], 283.,
5.26, 3.47} . The stock market price is the second item
in this list, whereas the bond price in the local currency is
given by 100*3.47*exp[-5.26%*(time to maturity in years)].
We use Mathematica ’s calendar functions to define two
dollar pricing functions:

Clear [stock,fbond ]
stock [ param_, market_ ]:= market [[2]];
fbond [ param_,market_ ]:=

market [[4]]*100*
Exp[-market [[3]]/10 0*

(param[[1]]-market [[1]])/365. 25];
junk ={dayN [{1997,8,9} ], 355.,5 .77,6. } ;
stock [{},junk ]
fbond [{1223},junk ]

355.

512.08

Next we define

pricingFun [instr_ ]:=
Switch [instr, STOCK,stock, FBOND,fbond ]

valueP [ portf_, mrkt_ ]:=
Module [{valueList, i},

valueList =
Table [Apply [ pricingFun [ portf [[i,1 ]] ],

{portf [[i,2 ]], mrkt} ]*portf [[i,3 ]],
{i,Length [ portf ]} ];
Apply [ Plus,valueList ]

];

Check that it works

mrkt9Feb97 = {40, 293., 5.30, 3.4} ;
currentPrice = valueP [ portfolio, mrkt9Feb97 ]

299.63

If everything is correct we should get 299.63 since the
current value of our stock position is 586 = 2 * 293, and

the bond position has a value of -286.37 = -100 * 3.4 *
e-0.053*1183/365.25.

For a VaR calculation we have to fix two parameters:
the time horizon and the confidence level (1 - quantile).
We choose a one day time horizon and an 80This time
horizon is a typical one for financial institutions, however
the confidence level 80% is very low, but it will allow us
to use a short data file. For a higher precision much more
data is necessary.

Historical Simulation

The first method we are presenting here is the histori-
cal simulation. We pretend that the change in the market
conditions from today to tomorrow are the same as the to
the changes that took place some time in the past. There
is an important question on what type of current changes
are the same as historic changes. The main difficulty is
to distinguish between multiplicative and additive types
of market variables. We provide here a simplistic scheme
assuming that all changes are additive, for a detailed ex-
planation of this problem see [Grundy, Wiener 1996].

This procedure pretends that the change in market pa-
rameters from today to tomorrow will be the same as it
was some time ago. The routine below returns a list of
the historical prices. Note that this procedure is completely
different from just pricing the current portfolio according
to old data, in which case the global change in the market
level is lost. Parameters of the historical simulation func-
tion are: portf - the current portfolio, mrkt - the current
market data, histData - the historical data.

histSimul [ portf_, mrkt_, histData_ ]:=
Module [{histPrice ={}, i},
For [ i =1, i <Length [histData ], i ++,

AppendTo[ histPrice,
valueP [portf,

mrkt +histData [[i +1]]-hi stData [[i ]]]
];

];
histPrice

];

To use this simulation for VaR measurement we use
the following function, which requires in addition to the
parameters described above the quantile.

HistApproach [ portf_, mrkt_, hData_, quant_ ]:=
Module [{currPrice, histPr, changes},

currPrice = valueP [ portf, mrkt ];
histPr = histSimul [ portf, mrkt, hData ];
changes = histPr - currPrice ;
{Quantile [ changes, quant ], changes, histPr}

];

The outcome of this function is a list of three objects.
The first one is the VaR, the second one is a list of pre-
tended market changes in the value of our portfolio. The
third is a list of resulting portfolio values.

4 Mathematica in Education and Research Vol. 7 No. 4 1998



V A L U E-A T-R I S K (V A R)

HistApproach [portfolio, mrkt9Feb97,
dataVAR, 0.2 ]

{-3.0144, {4.30181, 4.52345, -9.10677, 4.05111,

-2.97692, 2.80083, 9.73534, -5.41111, 4.32482,

5.98798, 2.05111, 2.80083, -2.88394, 0.682656,

8.35297, 2.89323, -15.4328, -4.26466, 1.02308,

3.73534, -14.2647, 1.90504, 6.57746, 6.89323,

2.05111, -5.72633, -3.0144, 8.18042, 3.64322,

0.170379, -3.53993, 2.18042, 3.71166, 0.577459,

0.743977, 0.143757, -1.63311, 0.577459,

2.61594}, {303.932, 304.153, 290.523, 303.681,

296.653, 302.431, 309.365, 294.219, 303.955,

305.618, 301.681, 302.431, 296.746, 300.313,

307.983, 302.523, 284.197, 295.365, 300.653,

303.365, 285.365, 301.535, 306.207, 306.523,

301.681, 293.904, 296.615, 307.81, 303.273,

299.8, 296.09, 301.81, 303.342, 300.207,

300.374, 299.774, 297.997, 300.207, 302.246}}

Thus the simulated daily VaR at 20% level is a loss of
$3.0144.

Variance Covariance Approach
This method is based on the assumption that the short

term changes in the market parameters and in the value of
the portfolio are normal. This method also reflects the fact
that the market parameters are not independent, however
it is restricted to the first degree of dependence - correla-
tion.

First based on historical data we build a vector of av-
erage daily changes in each parameter, and a historical
variance-covariance matrix of these changes. Second we
calculate a linear (so-called delta) approximation of our
portfolio for small changes in the market (first term of
the Taylor series). Third, we measure the variance of the
portfolio assuming normally distributed changes in the
market with this variance covariance matrix. Fourth, we
measure the lowest quantile of P&L (profit and loss) for
the required level of confidence.

To calculate the additive covariance matrix we use

AddChangesMx = Drop [dataVAR,1 ] - Drop [dataVAR,-1 ];
AddMeansVec = Mean[ AddChangesMx ];
AddCovMx = CovarianceMatrix [ AddChangesMx ];
sqrtAddCovar = MatrixPower [ AddCovMx, 1/2 ];

This completes the first step. We also recommend to
verify that the covariance matrix is positive definite (and
well-defined), since otherwise you may experience some
problems with stability.

The mean vector and covariance matrix of the market
data are

AddMeansVec

{1, 0.282051, 0.000512821, - 0.0025641 }

AddCovMx// MatrixForm

ÊÁÁÁÁÁÁÁÁÁ
Ë

0 0 0 0

0 6.10256 -0.0122537 -0.00328408

0 -0.0122537 0.000662888 -0.0000302294

0 -0.00328408 -0.0000302294 0.0007132

ˆ̃
˜̃
˜̃
˜̃
˜̃
¯

The first line and column correspond to the time change,
which is deterministic and thus uncorrelated with the rest
of the data.

Since our portfolio is not linear in the market parame-
ters we should measure its sensitivity to a small changes
in each parameter. There are different ways to do this. We
demonstrate below a way when we price the portfolio
under the current market data, then we increase one pa-
rameter by 1% of its value, and price the portfolio again.
Then take the finite difference and estimate the derivative.

Denote the price of a portfolio by P, this is a deter-
ministic function of the market data P(x). To measure the
sensitivity we consider P(x + Dix) - P(x) where Dix =
(0,0, ...,0,0.01xi ,0, ...,0). To estimate the partial derivative
of P with respect to the i-th argument we
calculate

∂P(x)
∂xi

ª
P(x + Dix) - P(x)

0.01xi

.

sensitivity [ portf_, mrkt_ ]:=
Module [{currentPrice, unitVec,

eps =0.01, deriv, i},
currentPrice = valueP [ portf,mrkt ];
unitVec = Table [ 1, {4} ];
deriv = Table [(valueP [ portf,

mrkt*ReplacePart [ unitVec, 1+eps, i ]]-
currentPrice )/ (mrkt [[i ]]*ep s), {i, 4} ]

];

Applying this function to our portfolio we get:

sensitivity [ portfolio, mrkt9Feb97 ]

{-0.0415553, 2., 9.26722, - 84.2265 }

We will also need the matrix of second derivatives of
the pricing function. Using finite differences it can be cal-
culated as:

ClearAll [secondDeriv ];
secondDeriv [portf_, mrkt_ ]:=

Module [{zerVec = Table [ 0, {4} ],
unitVec =Table [ 1, {4} ], eps =0.01, i,j},

Table [
(valueP [ portf,

mrkt* (unitVec +ReplacePar t [ zerVec, eps, i ]+
ReplacePart [ zerVec, eps, j ])]-

valueP [ portf,
mrkt* (unitVec +ReplacePar t [ zerVec, eps, i ]+

ReplacePart [ zerVec, -eps, j ])]-
valueP [ portf,

mrkt* (unitVec +ReplacePar t [zer Vec, -eps, i ]+
ReplacePart [ zerVec, eps, j ])]+

valueP [ portf,
mrkt* (unitVec +ReplacePar t [zer Vec, -eps, i ]+

ReplacePart [ zerVec, -eps, j ])])/4/
(mrkt [[i ]]*eps )/ (mrkt [[j ]]* eps ), {i,4}, {j,4} ]

];
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secondDeriv [ portfolio,mrkt9Feb97 ]/ /Matri xForm

ÊÁÁÁÁÁÁÁÁÁ
Ë

-6.02975 ¥ 10-6 0. -0.00649451 -0.0122218

0. 0. 0. 0.

-0.00649451 0. -0.300412 2.72799

-0.0122218 0. 2.72799 0.

ˆ̃
˜̃
˜̃
˜̃
˜̃
¯

Zeros indicate that the part of our portfolio that de-
pends on the stock market is not influenced directly by
the interest and exchange rates. It still is influenced by
correlations between differnt market factors, but indirectly
only.

Price of a portfolio is a function of the market data,
say P(x), where x is the vector of the market data. The
current parameters of the market are known x0, however
tomorrow the market will move to a new vector x1. The
important simplifying assumption of the variance covari-
ance approach is that the changes of the parameter vector
are assumed to be normally distributed. Then we can write

P(x1) = P(x0) + P ¢(x0)(x1 - x0)+

1
2

P ¢¢(x0)(x1 - x0)
2 + o(x1 - x0)

,

We keep the second order term due to Ito’s lemma. As-
sume that the market parameter x follows a simple arith-
metic Brownian motion. dx=mdt + sdB, then by Ito’s
lemma we can keep only terms up to the order dt by
choosing

P(x1) ª P(x0) + P ¢(x0)(mDt + sDB)+

1
2

P ¢¢(x0)s2 Dt +o(Dt)

We assume that all components of the vector Dx = x1 -
x0 are normally distributed, and the covariance matrix is
known, s2= S(x,t). Then the right hand side is a linear
combination of normally distributed random variables. As
soon as all means are very small (note that daily expected
changes are close to zero), the change in value can be
approximated by a normally distributed random variable
with mean and variance defined below:

mP = E (P(x1) - P(x0)) =

Jm.P ¢(x0) +
1
2

tr(P ¢¢(x0).S)N Dt

s2
P = var(P(x1) - P(x0)) = P ¢(x0).S .(P ¢(x0))

T Dt

Here the superscript T denotes transposition and we use
the standard vector product of lists. Then the lower q-
quantile can be approximated by a q-quantile of the nor-
mal distribution N(mP , sP )

VaR(q) = mP + sP ◊ Quantile(N(0,1), q)

The sign plus here corresponds to the lowest quantile,
since, the Quantile(N(0,1), q) is negative for q < 0.5. Note
that E(Dx) and S are characteristics of the market and not
of the portfolio. Thus they can be used for measuring risks
of different portfolios. The Mathematica implementation
of this idea looks like:

Clear [VarCovarAdd ]
VarCovarAdd [ portf_, mrkt_, varCovarMx_,

drift_, quant_ ]:=
Module [{sens, secDeriv,i},

sens = sensitivity [ portf, mrkt ];
secDeriv =secondDeri v[ portf,mrkt ];
drift.sens +

Sum[(varCovarMx.secDeriv )[[i, i ]], {i,4} ]/2 +
Sqrt [sens.varCovarMx.se ns]*
Quantile [ NormalDistribution [0,1 ], quant ]

];

VarCovarAdd [portfolio, mrkt9Feb97,
AddCovMx, AddMeansVec, 0.2 ]

-3.87143

Note that Trace means in Mathematica something com-
pletely different from the mathematical trace of a matrix,
thus we use Sum instead.

Monte Carlo Approach
This method is based on the assumption that we have

some information about the joint distribution of market
changes. Then using this distribution we can draw ran-
domly a large number of scenarios and price the portfolio
for each scenario. A rich set of scenarios will give a good
approximation for the distribution of final value of the
portfolio. The lowest q-quantile of this distribution can be
used as an approximation to VaR. Moreover this method
allows a dynamic improvement. One can run a small set
of simulations, get a preliminary result and then improve
it by running additional simulations if necessary.

In the example below we choose the simplest form
of the joint distribution - all market parameters are dis-
tributed jointly normal with the same mean and covari-
ance as we have measured above. In a general case one
can provide any reasonable distribution and use the same
method.

nor [mu_,sig_ ]:=
Random[ NormalDistribution [mu,si g] ];

MCvarAdd[portf_, mrkt_, n_:10]:=
Module [

{tbl, simulatedParam, values},
tbl = Table [ sqrtAddCovar.Table [ nor [0,1 ],
{Length [AddCovMx]} ] + AddMeansVec, {n} ];

simulatedParam = Table [mrkt,{n} ] + tbl ;
values =

Map[valueP [ portf,# ]&, simulatedParam ];
{Mean[values ], StandardDeviation [va lues ],

StandardErrorOfSample Mean[values ],
values, simulatedParam }

];

To generate a vector of correlated normally distributed
random variables we generate first a vector of indepen-
dent random variables (normally distributed) and then
multiply it by the square root of the covariance matrix.
It is left as an exercise to verify that this leads to the re-
quired correlation. The tbl table is the resulting table of
market changes.

The following function incorporates all the necessary
steps for Monte Carlo approach to VaR. The parameters
of this function are: portf portfolio, mrkt current market
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data, quant quantile, n number of generated scenarios.
This function returns the VaR estimate and the list of all
changes in the value of the portfolio that were observed
in this simulation.

MCApproachAdd[ portf_, mrkt_, quant_, n_:10 ]:=
Module [{currentValue, changes},

currentValue = valueP [ portf,mrkt ];
changes = MCvarAdd[portf, mrkt, n][[4]] -

currentValue ;
{Quantile [ changes, quant ], changes}

];

To get consistent results this function can be combined
with the random seed generator. For 1000 simulations
(about 1 minute of computational time) we get:

SeedRandom[1];
MCApproachAdd[ portfolio, mrkt9Feb97, 0.2,
1000 ][[1]]

-3.71068

Running this simulation again we get a similar result:

SeedRandom[7];
MCApproachAdd[ portfolio, mrkt9Feb97,

0.2, 1000 ][[1]]

-3.76359

Discussion
The historical simulation method is useful when the amount
of data is not very large and we do not have enough in-
formation about the profit and loss distribution. It is usu-
ally very time consuming, but its main advantage is that
it catches all recent market crashes. This feature is very
important for risk measurement.

The variance covariance method is the fastest. How-
ever it relies heavily on several assumptions about the
distribution of market data and linear approximation of
the portfolio. It is probably the best method for quick es-
timates of VaR. However one should be very careful when
using this method for a non-linear portfolio, especially in
the case of high convexity in options or bonds.

The Monte Carlo simulation method is very slow, but
it is probably the most powerful method. It is flexible
enough to incorporate private information together with
historical observations. There are many methods of speed-
ing calculations, so-called variance reduction techniques.

The results of all three methods are similar and our
goal was to demonstrate a very basic approach to risk
measurement techniques using Mathematica.
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