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Binomial Option Pricing, the
Black-Scholes Option Pricing Formula,
and Exotic Options
The authors show that in the limit the binomial option pricing model
considered in their first article converges to the Black-Scholes option
pricing formula. They then consider the pricing of “exotic” options, whose
value depends on the price path of the underlying asset.

by Simon Benninga and Zvi Wiener

I n the first article in this series we introduced the bi-
nomial option pricing formula. Since the publication
of that article, the Nobel prize in economics has been

awarded to Robert Merton and Myron Scholes; along with
the late Fischer Black, these two economists helped shape
much of the modern pricing theory of options. We start
this article by explaining the Black-Scholes option pricing
formula; we then use Mathematica to show numerically
that the binomial price converges to the Black-Scholes
price for European options and for some American op-
tions. Finally, we consider binomial approaches to pric-
ing “exotic” options–options whose price depends on the
whole price path of the underlying asset.

THE BLACK-SCHOLES OPTION PRICING FORMULA
In a path-breaking paper, Black-Scholes (1973) proved the
following theorem:

Theorem. Consider a European call option on a
stock whose current price is S. Suppose that the stock
price is lognormally distributed with volatility R, that
the option’s exercise price is X , that the exercise date
of the option is T , and that the continuously com-
pounded interest rate is r . Furthermore assume that
the stock will pay no dividends before the option ex-
ercise date T . Then the call price is given by:

C = SN (d1) ª XeªrT N (d2)‚
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and where N () indicates values of the cumulative
standard normal distribution.

By the Put-Call Parity Theorem, suppose we are pric-
ing a European call and put, both with exercise date T
and both defined on a stock whose current price is S and
which does not pay dividends before the maturity date

T. Then if the continuously compounded interest rate is
r, the value P of the put, the value C of the call, and the
stock price S are related by P = C +XeªrT ªS . Applying this
theorem, it follows that the Black-Scholes price of a Euro-
pean put written on the same stock with the same exercise
price and date is given by P = ªSN (ªd1) + XeªrT N (ªd2).

The only problem with implementing the Black-Scholes
formula in Mathematica is how to compute values of the
standard normal distribution. We offer 4 solutions and
suggest trying them all. The four functions snormal are
different in speed of computation and other properties.
Note that the fourth function is based on the Normal-
Distribution function which is defined in the stan-
dard package Statistics.
In[1]:=

snormal1[x_]:=
Integrate[Exp[-zˆ2/2]/Sqrt[2*Pi],
{z,-Infinity,x}]//N

snormal2[x_]:=
NIntegrate[Exp[-zˆ2/2]/Sqrt[2*Pi],
{z,-Infinity,x}];

snormal3[x_]:= Erf[x/Sqrt[2]]/2+0.5;

In[2]:= Needs["Statistics‘Master‘"]
ndist=NormalDistribution[0,1];

In[3]:= snormal4[x_]:=CDF[ndist,x]//N;

To compare performance, we can calculate 100 values
of the normal distribution for each function:

In[4]:=

Timing[Table[snormal1[i/100], {i, 100}]; ][[1]]
Timing[Table[snormal2[i/100], {i, 100}]; ][[1]]
Timing[Table[snormal3[i/100], {i, 100}]; ][[1]]
Timing[Table[snormal4[i/100], {i, 100}]; ][[1]]

Out[4]= 95.3 Second

10.6 Second

0.05 Second

0.27 Second
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The results show how much faster the calculation can
be performed with built-in functions (the fourth definition
is almost 400 times faster than the first). However, there
are some more subtle differences that can be relevant
when we try to differentiate these functions. For example,
the function snormal2 is a numerical expression, while
the others are analytic.

Having defined the normal distribution, we program
the Black-Scholes formula for both puts and calls (note
the trick used to switch between the various definitions
of the normal distribution):

In[5]:= Clear[snormal, d1, d2, bsCall, bsPut]
snormal=snormal3;
d1[s_, x_, sigma_, T_, r_]:=
(Log[s/x]+(r+sigmaˆ2/2)*T)/
(sigma*Sqrt[T])

d2[s_, x_, sigma_, T_, r_]:=
d1[s, x, sigma, T, r]-sigma*Sqrt[T]

bsCall[s_, x_, sigma_, T_, r_]:=
s*snormal[d1[s,x,sigma,T,r]]-x*
Exp[-r*T]*snormal[d2[s,x,sigma,T,r]]

bsPut[s_,x_,sigma_,T_,r_]:=
bsCall[s,x,sigma,T,r]+x*Exp[-r*T]-s

We can easily use Mathematica to graph these func-
tions:

In[6]:=

Plot[bsCall[s, 50, 0.2, 0.5, 0.05],
{s, 0.01, 70}, PlotRangeéAll,
AxesLabelé{"stock price", "call price"}]
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THE BINOMIAL OPTION PRICE CONVERGES TO THE
BLACK-SCHOLES PRICE
In the previous article in this series we defined a binomial
option pricing formula for European options for which –
in the limit – the stock’s price process converges to the
lognormal price:

In[7]:= Clear[EuropeanOption, EuropeanCall,
EuropeanPut]
EuropeanOption[s_, sigma_,

T_, r_, exercise_Function, n_] :=
Module[{
u = N[Exp[Sqrt[T/n]*sigma]],
d = N[Exp[-Sqrt[T/n]*sigma]],
R = N[Exp[r*T/n]]},
p = (R - d)/(R*(u - d));
q = (u - R)/(R*(u - d));

Sum[exercise[s*uˆj*dˆ(n - j)]*
Binomial[n, j]*pˆj*qˆ(n - j),
{j, 0, n}]]

EuropeanCall[s_, x_, sigma_, T_, r_, n_] :=
EuropeanCall[s, x, sigma, T, r, n] =
EuropeanOption[s, sigma, T, r,
Max[#1 - x, 0] & , n];

EuropeanPut[s_, x_, sigma_, T_, r_, n_] :=
EuropeanPut[s, x, sigma, T, r, n] =
EuropeanOption[s, sigma, T, r,
Max[x - #1, 0] & , n];

We can now show that this binomial pricing formula
converges to the Black-Scholes price:

In[8]:= ListPlot[
Table[{n,bsCall[50,45,
0.4, 0.25, 0.06] -
EuropeanCall[50, 45, 0.4, 0.25,
0.06, n]}, {n, 10, 500, 10}],

PlotJoinedéTrue, PlotRangeéAll,
AxesLabelé{n,""}];
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In the same article, we also defined the following func-
tion to price American options:

In[9]:=

AmericanOption[s_,sigma_,T_, r_,
exercise_Function,n_]:=

Module[{u=N[ Exp[ Sqrt[T/n]*sigma]],
d=N[ Exp[-Sqrt[T/n]*sigma]],

R=N[ Exp[ r* T/n] ], p, q, OpRecurse},
p=(R-d)/(R*(u-d)); q=(u-R)/(R*(u-d));
OpRecurse[node_, level_]:=

OpRecurse[node, level]=
If[ level==n,
exercise[s*dˆnode*uˆ(level-node)],

Max[{p,q}.{OpRecurse[node, level+1],
OpRecurse[node+1, level+1]},
exercise[s*dˆnode*uˆ(level-node)]
]];
OpRecurse[0,0]];
AmericanCall[ s_, x_, sigma_, T_, r_, n_ ]:=
AmericanCall[ s, x, sigma, T, r, n ]=
AmericanOption[ s, sigma, T, r,
Max[#-x,0]&, n];

AmericanPut[ s_, x_, sigma_, T_, r_, n_ ]:=
AmericanPut[ s, x, sigma,T, r, n ]=
AmericanOption[ s, sigma, T, r,

Max[x-#,0]&, n];

A well-known theorem in the option pricing literature
states that the price of an American call on a stock without
dividends (as is the case here) is the same as the price
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of a European option. However, it need not be that an
American put and a European put have the same price.
Both of these properties are illustrated below:

In[10]:=

Table[{n,AmericanCall[50,45,0.4,0.25,0.06,n]-
EuropeanCall[50,45,0.4,0.25,0.06,n]},
{n,1,100,10}]

In[11]:=

a=Table[{n,AmericanPut[50,45,0.4,1,0.10,n]-
EuropeanPut[50,45,0.4,1,0.10,n]},

{n,10,80,10}];

In[12]:=

ListPlot[a,
PlotStyleéPointSize[0.02],
Frameé{True,True,False,False},
FrameLabelé{"n = iterations",difference},
PlotLabelé"Difference Between American

and European Put",
DefaultFonté{"Helvetica",9} ];
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It follows that the early exercise option of the Amer-
ican call is worthless (and hence, that the Black-Scholes
formula can price both European and American calls on
stocks which pay no dividends before the call’s maturity);
however, the early exercise feature of American puts is
potentially valuable.

EXOTIC OPTIONS
European and American puts and calls are by far the most
popular types of financial options. However, the develop-
ment of financial markets has spawned many other types
of options. Often these options are marketed as part of a
financial package, such as the option implicit in a callable
bond or the prepayment option in a mortgage. Most of
these options are path dependent and in most cases there
is no analytic solution for the price.

In this section we give examples of several kinds of
such “exotic” options, together and show how the prices
may be calculated numerically with Mathematica.

Asian options
An Asian call option gives its owner the right to buy (or
sell, if it is an Asian put) a share of stock for the average
price during some period between the beginning of the
contract and the exercise date of the option. Options on
oil, for example, commonly tie the exercise price of the
option to the average price of a barrel of oil in the month
before the option exercise date. Such an option is useful
to a company which buys oil on a monthly basis and

wants to protect itself from losing money during periods
of high price volatility.

To price an Asian option, we can perform the stan-
dard backward induction using a binomial option pricing
model. At maturity, the option’s payoff is known and is
equal to the payoff which results from the average stock
price over the whole period. If early exercise of the option
is allowed, then one period before exercise, the option’s
value is equal to the maximum of the price of the option
exercised immediately and the present value–using the
state prices p and q–of the next-period payoffs (this is the
standard American option pricing problem explained in
our previous article). The following routine shows how
to do this in Mathematica:

In[13]:=

Clear[AsianOption,AmerAvgCall,
EurAvgCall,mean]

mean[x_List]:= Apply[Plus,x]/Length[x]//N
AsianOption[s_, sigma_, T_,r_,
exerciseAtT_Function,

earlyExercise_Function, n_]:=
Module[{u=N[Exp[Sqrt[T/n]*sigma]],
d=N[Exp[-Sqrt[T/n]*sigma]],
R=N[ Exp[ r*T/n] ], p, q, OpRecurse},
p=(R-d)/(R*(u-d)); q=(u-R)/(R*(u-d));

OpRecurse[prices_List, level_]:=
If[ level==n, exerciseAtT[prices],

Max[{OpRecurse[Append[ prices,
u Last[prices]],level+1],

OpRecurse[Append[ prices,
d Last[prices]], level+1]}.{p,q},
earlyExercise[prices]]];

OpRecurse[{s}, 0]
];

In[14]:= AmerAvgCall[s_,sigma_,T_,r_,n_]:=
AmerAvgCall[s,sigma,T,r,n]=
AsianOption[s,sigma,T,r,
Max[0, mean[#]-Last[#]]&,
Max[0, mean[#]-Last[#]]&,n];

In[15]:= EurAvgCall[s_,sigma_,T_,r_,n_]:=
EurAvgCall[s,sigma,T,r,n]=
AsianOption[s,sigma, T, r,
Max[0, mean[#]-Last[#]]&, 0&,n];

In[16]:= AmerAvgPut[s_,sigma_,T_,r_,n_]:=
AmerAvgPut[s,sigma,T,r,n]=
AsianOption[s,sigma, T,r,
Max[0,Last[#]-mean[#]]&,
Max[0, Last[#]-mean[#]]&,n];

In[17]:= EurAvgPut[s_,sigma_,T_,r_,n_]:=
EurAvgPut[s,sigma,T,r,n]=
AsianOption[s, sigma, T, r,
Max[0, Last[#]-mean[#]]&, 0&,n];

To check the difference between the two call options
we use the following example (here the initial stock price
is $100, there are 10 periods, R= 35% there is one-half
year until maturity and the annual risk free interest rate is
8%).

In[18]:= s=100;sigma=0.35;T=0.5;r=0.08;n=10;
AmerAvgCall[s,sigma,T,r,n]
EurAvgCall[s,sigma,T,r,n]
AmerAvgPut[s,sigma,T,r,n]
EurAvgPut[s,sigma,T,r,n]
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Out[18]= 6.38749

4.6354

7.82452

6.60769

It is no longer true that an American average call and
a European average call have the same price: As the fol-
lowing graphic shows, the American average call is, in
general, more valuable than the European average call:

In[19]:= Clear[s,sigma,T,r,n];
s=100;sigma=0.35;r=0.08;n=5;
Plot[AmerAvgCall[s,sigma,T,r,n]-
EurAvgCall[s,sigma,T,r,n],{T,0,1},
Frameé{True,True,False,False},
PlotLabelé"Difference between\n

AmerAvgCall and EurAvgCall",
FrameLabelé{"T=time to maturity",""},
DefaultFonté{"Helvetica",10}]
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