
T H E B I N O M I A L O P T I O N P R I C I N G M O D E L

The Binomial Option Pricing Model
The authors consider the case of option pricing for a binomial process—the
first in a series of articles in Financial Engineering.

by Simon Benninga and Zvi Wiener

T he two major types of securities are stocks and
bonds. A share of stock represents partial owner-
ship of a company with an uncertain payoff which

depends on the success of the specific business. Bonds,
on the other hand, are loans which must be repaid except
in cases of default; they can be issued either by govern-
ments or by business.

Modern financial markets offer many other instruments
besides stocks and bonds. Some of these instruments are
called derivatives, since their price is derived from the
values of other assets. The most popular example of a
derivative is an option, which represents a contract allow-
ing to one side to buy (in the case of a call option) or to
sell (the case of a put option) a security on or before some
specified maturity date in the future for a price which is
set today. This prespecified price is called the exercise
price or the strike price of the option.

The two major classes of options are called European
and American. A European option can be exercised only
at maturity while an American option can be exercised at
any time prior to maturity.

Option pricing is topic of the current and the following
article in this series. The price of an option is typically
a non-linear function of the underlying asset (and some
other variables, like interest rates, strike, etc.) The basis of
any option pricing model is a description of the stochastic
process followed by the underlying asset on which the
option is written. In the Black-Scholes model, which will
be discussed in the next article, the assumption is that
the stock price is lognormally distributed (that the price
follows a Wiener process with constant drift and variance).

In this article we consider the case where the stock
price follows a simple, stationary binomial process. At
each moment in time, the price can go either up or down
by a given percentage. When the stock price follows such
a process and when there exists a risk-free asset, options
written on the stock are easy to price. Furthermore, given
appropriate limiting conditions, the binomial process con-
verges to a lognormal price process and the binomial pric-
ing formula converges to the Black-Scholes formula.

AN EXAMPLE
Consider a stock whose price today is $50. Suppose that
over the next year, the stock price can go either up by

10% or down by -3%, so that the stock price at the end of
the year is either $55 or $48.50. If there also exists a call
on the stock with exercise price K ± 50, then these three
assets will have the following payoff patterns:

bond price

1
1.06

1.06

stock price

50
55

48.5

call option

???
5

0

In this case the option payoffs can be replicated by a
linear combination of the stock and the bond. This com-
bination defines its price uniquely. To see this, denote by
A the number of shares and by B the number of bonds
which exactly replicate the option’s payoffs. This gives
the following system of linear equations to solve:

55A ∫ 1.06B ± 5

48.5A ∫ 1.06B ± 0

Using Mathematica to solve these equations, we get:

In[1]:= Solve[{55*A + 1.06*B == 5,

48.5*A + 1.06*B == 0},

{A, B}]

Out[1]= {{A é 0.769231, B é ª35.1959}}

This system of equations solves to give A = 0.769231,
B ± ª35.1959. Thus purchasing 0.77 of a share of the
stock and borrowing $35.20 at 6% for one period will
give payoffs of $5 if the stock price goes up and $0 if the
stock price goes down—the payoffs of the call option.
It follows that the price of the option must be equal to
the cost of replicating its payoffs, i.e., call option price ±
0.7692 ` $50 ª $35.1959 ± $3.2656.

This logic is called “pricing by arbitrage”: If two assets
or sets of assets (in our case—the call option and the
portfolio of 0.77 of the stock and -$35.20 of the bonds)
have the same payoffs, they must have the same market
price.

A TWO-DATE EXAMPLE
We can extend this example to multiple periods. Here, for
example, is a two-date example; the price of a call option

Vol. 6 No. 3 1997 Mathematica in Education and Research 1

T H E B I N O M I A L O P T I O N P R I C I N G M O D E L

with exercise price 50 solves (as indicated) to 5.749.

50
55

48.5

60.50

53.35

47.05

1.06

1.06

1.1236

1.1236

1.1236

5.749
7.830

2.188

10.50

3.35

0.00

1

Stock price Bond price

Call option price

The solution of this problem with Mathematica is left
as an exercise.

STATE PRICES AND THE BINOMIAL
OPTION PRICING MODEL
We now reconsider the first example of the previous sec-
tion. Suppose that the states of the world called “up” and
“down” represent all of the uncertainty in the next period.
We can derive market prices for these states by solving the
following set of simultaneous equations:

p ` $55 ∫ q ` $47.50 ± $50.00
p ∫ q ± 1

1.06

The market prices p and q are the price today of an “up”
and a “down” state respectively. The price p represents the
price today of one dollar in an “up” state tomorrow and
the price q the price today of one dollar in a “down” state
tomorrow. The economic logic behind the first equation
is that the price paid today for the stock, $50.00, repre-
sents a price paid today for $55 of stock value in an “up”
state tomorrow plus the price paid today for $47.50 in a
“down” state tomorrow. The second equation is derived
from much the same logic for the riskless bond: Given a
price today of $100, the bond will return $100`1.06 ± $106
tomorrow in both the “up” and the “down” states, so that
the relevant pricing equation should be 106`(p∫q) ± 100.
Hence the second equation.

This system of equations can, of course, be solved us-
ing Mathematica:

In[2]:= Solve[{55*p + 47.5*q == 50,

p + q == 1/1.06}, {p, q}]

Out[2]= {{p é 0.691824,q é 0.251572}}

Given an “up” and “down” movement, we can easily
derive the general expressions for p and q . As an amuse-
ment we will use Mathematica to solve the equations, us-
ing an upper-case R to denote one-plus-the-interest rate:
R ± 1 ∫ r .

In[3]:= a = Simplify[Solve[{p*up + q*down == 1,

p + q == 1/R}, {p, q}]]

Out[3]=

{{
p é downªR

downR ª Rup
, q é R ª up

downR ª Rup

}}
A little algebra will show that this solution can be sim-

plified further:

p ±
R ª down

R(up ª down)
‚ q ±

1
R
ª p

We can make this example more complicated. Suppose
we divide the interval between 0 and 1 into n subintervals.
Suppose that in each of these subintervals the price of the
stock can go up by u or down by d and suppose that the
riskless interest rate over a subinterval is r . Now let p be
the state price over one such interval for an up state and
q be the one-interval state price; i.e., {p,q} solves

p ` u ∫ q ` d ± 1

p ∫ q ± 1
1∫r

Then the price of the stock at time 1 will be su j dnªj ,
where s is the initial stock price and j is the number of up
movements in the stock price over the period. A European
call option with exercise price X and exercise date n will
have payoff in state {n‚ j} given by

payoff in state (n‚ j) ± Max [suj dnªj ª X ‚ 0]

Given the state prices {p‚ q}, the option price can be cal-
culated as:

C (X) ±
n∑

j±0

p j q jªn

(
n

j

)
Max [su j dnªj ª X ‚ 0]

Similarly, the price of a European put is given by:

P(X) ±
n∑

j±0

p j q jªn

(
n
j

)
Max [X ª su j dnªj ‚ 0]

Where the binomial coefficient(
n

j

)
±

n!
j !(n ª j)!

denotes the number of occurrences of j up states in n
subintervals. Implementing this in Mathematica is simple:

In[4]:= Clear[statePrices]

statePrices[up_, down_, R_] :=

Solve[{p*up + q*down == 1,

p + q == 1/R}, {p, q}][[1]]

Clear[binomialCall]

binomialCall[s_, x_, n_] :=

Sum[pˆj*qˆ(n - j)*Binomial[n, j]*

Max[s*upˆj*downˆ(n - j) - x, 0],

{j, 0, n}] /. statePrices[up, down, R]

up = 1.1;

down = 0.97;

R = 1.06; binomialCall[50, 50, 2]

Out[4]= 5.74917

What is still lacking is the connection between the bi-
nomial price process discussed in this section and the log-
normal price process which underlies the Black-Scholes
formula. We discuss this connection in the next section.

DETERMINING THE BINOMIAL PARAMETERS
Suppose that a stock’s return is lognormally distributed
with mean K and standard deviation R. Denoting the stock
price today by s and the stock price at date t in the future
by st , this means that

log
(

st

s

)
t N (Kt ‚ R

³
t)

2 Mathematica in Education and Research Vol. 6 No. 3 1997

Simon Z Benninga
Note: in the formula for P(X), should be p^j*q^(n-j), and not as written.

T H E B I N O M I A L O P T I O N P R I C I N G M O D E L

We want to determine the parameters of a binomial dis-
tribution which, in the limit, will converge to a given log-
normal distribution. We first assume that t ± 1 and that
the interval between time 0 and time 1 is divided into n
subintervals; in each subinterval the stock price can go
up or down with a factor u or d ; the probability of an
increase u is denoted O.

π

s

su

sd 1 - π

stock price

In general all three of these parameters—u, d , and O—
will be functions of n. If, at the end of n subperiods, there
have been j upward jumps, then the terminal stock price
will be su j dnªj

The logarithm of one-plus the return from investing in
the stock at date 0 will then be:

log
[

su j dnªj

s

]
±

j log(u) ∫ (n ª j) log(d) ± j log
(

u
d

)
∫ n log(d)

Taking the expectation and variance, we get:

E
{
log

[
su j dnªj

s

]}
±

E (j) log
(

u
d

)
∫ n log(d) ± n O log

(
u
d

)
∫ n log(d)

Var
{
log

[
s ui dnªj

s

]}
±

var(j)
[
log

(
u
d

)]2
± nO(1 ª O)

[
log

(
u
d

)]2

The second equation follows since the variance each pe-
riod is given by

(u ª d)2 (O(1 ª O)2 ∫ (1 ª O)O2) ± (u ª d)2 O(1 ª O)

Thus, solving for the parameters u, d , O which converge
to a given lognormal distribution involves solving the fol-
lowing two equations:

n O log
(

u
d

)
∫ n log(d) ± K

n O(1 ª O)
[
log

(
u
d

)]2
± R2

Note that there are 3 unknowns and only two equations;
in solving the equations we can thus arbitrarily (almost
...) set one of the unknowns. We do this in Mathematica.
Below, for example, is the solution when we set O ± :

In[5]:= a = Solve[{(pi*Log[u/d] + Log[d])*n == mu,

n*pi*(1 - pi)*Log[u/d]ˆ2 == var} /.

pi -> 1/2, {u, d}]

Out[5]=

{{
u é e

K ∫
³
n
³
var

n ª
2
³
var³
n , d é e

K ∫
³
n
³
var

n
}
,

{
u é e

K ª
³
n
³
var

n ∫
2
³
var³
n , d é e

K ª
³
n
³
var

n
}}

(Note: These equations will solve in Mathematica version
2 only if you append //PowerExpand to the equations)

As you can see, there are two (symmetric) solutions.
However, since we want u ç d , the second solution
a[[2]] is the one we are looking for:

In[6]:= a[[2]] /. {mu -> 0.12, var -> 0.2ˆ2,

p -> 0.5, n -> 100}

Out[6]= {u é 1.02143, d é 0.981376}

Substituting in some values and calculating the fre-
quency diagram, we get

In[7]:= pi = 0.5;

mu = 0.12;

var = 0.2ˆ2;

n = 100;

aa = ListPlot[Table[{uˆj*d̂ (n - j),

piˆj*(1 - pi)ˆ(n - j)*Binomial[n, j]},

{j, 0, n}] /. a[[2]],

PlotJoined -> True,

PlotRange -> All];

2 4 6 8

0.02

0.04

0.06

0.08

Note that this is not the only set of values which con-
verges to the lognormal. [Cox, Ross, Rubinstein 1979] use
the following values:

u ± eR
³

1/n‚ d ±
1
u
± eªR

³
1/n‚ O ±

1
2
∫

1
2

K

R

³
1/n

Note that these values do not solve the equations pre-
cisely; however, they converge to the correct values as
n é É. We can see this convergence using Mathematica

In[8]:= Clear[q, u, d, pi, mu, sigma, n]

mu = 0.12;

sigma = 0.2; n = 10;

b = {pi -> 1/2*(1 + mu/sigma*Sqrt[1/n]),

u -> Eˆ(sigma*Sqrt[1/n]),

d -> Eˆ(-sigma*Sqrt[1/n])}

bb = ListPlot[Table[{uˆj*d̂ (n - j),

piˆj*(1 - pi)ˆ(n - j)*Binomial[n, j]},

{j, 0, n}] /. b, PlotRange -> All,

PlotStyle -> PointSize[0.02]];

{O é 0.594868,ué 1.06529,d é 0.938713}

Vol. 6 No. 3 1997 Mathematica in Education and Research 3

T H E B I N O M I A L O P T I O N P R I C I N G M O D E L

0.6 0.8 1.2 1.4 1.6 1.8

0.05

0.1

0.15

0.2

0.25

Graphing the previous graph (when O ± 1
2) with this

graph:

In[9]:= Show[aa,bb];

2 4 6 8

0.05

0.1

0.15

0.2

0.25

When we have n ± 100, these two graphs are indeed
very close

2 4 6 8

0.02

0.04

0.06

0.08

EQUIVALENT MARTINGALE MEASURES:
RISK-NEUTRAL PRICING
The state prices

p ±
R ª down

R(up ª down)
‚ q ±

1
R
ª p

probabilities, since p ∫ q ± 1/R. Multiplying the state
prices by R ± 1 ∫ r allows us to regard them as “pseudo
probabilities”. The technical name for this is “equivalent
martingale measure.” Since we are about to price options
(and other derivative securities) by using state prices, we

could also regard the pricing in an equivalent fashion:
Instead of pricing by p and q , we can price by Rp and
Rq. This allows us to say:

“In a perfect market, there exists an equivalent prob-
ability measure such that the price of any security is its
discounted expected value with respect to this measure.”

In more complicated situations, the equivalent proba-
bility measure is given by the Radon-Nikodym derivative.
For the simple binomial case discussed here, we can easily
see the application of this approach. Take the stock price,
for example: After one period, the stock price is either
su or sd . Taking the expected value using the equivalent
probability weights {pR‚ qR} gives

pR _ su ∫ qR _ sd ± Rs

so that the discounted value of the expected value is in-
deed the stock price:

1
R
_ [pR _ su ∫ qR _ sd] ± s

Of course, given our definition of “up” and “down” move-
ments and given the interest rate r , this is tautological,
since our definition of p and q is derived in such a way as
to make this true. Nevertheless, we can prove the state-
ment for any market in which pricing does not allow
arbitrage opportunities.

Furthermore, we can—in a non-trivial way—use the
“risk-neutral” pricing principle (i.e., pricing returns by
discounting their expected return at a properly defined
equivalent probability measure) to value options. Thus,
for example, if in a binomial world a security pays off X
in an “up” state and Y in a “down” state, then its market
value today will be given by:

value ±
1
R
_ [pR _ X ∫ qR _ Y]

EUROPEAN BINOMIAL OPTION PRICES
WITHOUT DIVIDENDS
In this section we develop the binomial pricing model
for options. We start with a simple European call option.
Suppose a single period is divided into T intervals, so
that the price of the stock at the end of the last interval
can be written sT . Then the call option price at maturity
coincides with its payoff function,

Max [sT ª X ‚ 0]

A day prior to maturity at each state we can calculate
the call price as a weighted average (with risk-neutral
probabilities as weights) of its price at maturity. Obviously
this procedure can be continued to the root of the stock
tree, giving price of the option today.

The above procedure will work for both European and
American options. However, in the case of European op-
tions we can use a simpler procedure based on obser-
vation that only the distribution of payoffs at maturity

4 Mathematica in Education and Research Vol. 6 No. 3 1997

T H E B I N O M I A L O P T I O N P R I C I N G M O D E L

matters. We can calculate state prices of each state at ma-
turity and take a weighted average of payoffs with these
weights.
Example 1. Assume that interest rates equal 6% (each pe-
riod). In a 4 periods model we expect “up” jumps to be
1.1 and “down” jumps to be 0.95 each period. If the ini-
tial stock price is $50, then the development of the stock
price is described below:

In[10]:= up = 1.1;

down = 0.95;

r = 0.06;

stock =

Table[50*upˆ(j - 1)*downˆ(i - j),

{i, 1, 5}, {j, 1, i}];

MatrixForm[stock]

Out[10]=
{50}

{47.5,55.}
{45.125,52.25,60.5}

{42.8687,49.6375,57.475,66.55}
{40.7253,47.1556,54.6013,63.2225,73.205}

Note that the indices go from 1 to n∫1 and from 1 to i,

which means that the date 0 corresponds to the node with
indices (1,1) and the last date all ups node corresponds
to indices (n ∫ 1‚ n ∫ 1). The Mathematica convention is
not to use zero as an index of an array; for example, we
could have written the stock prices in period 4 by using
the list junk produced by junk = Table[50*upˆ(j-

1)*downˆ4-j), {j,0,4}]. This would have produced
the same output as above:

{40.7253,47.1556,54.6012,63.2225,73.205}

However (and this is the important part!), Mathematica
will not recognize junk[[0]] as the first item in this list;
for Mathematica the list junk is indexed from 1 to 5, not
from 0 to 4. Thus the first index here is the actual day +
1 and the second index is the number of “up” jumps + 1.
We show a way to avoid this inconvenience later.

To find one period state prices we use the method
described above.

In[11]:= solution =

Solve[{p*(1 + r) + q*(1 + r) == 1,

up*p + down*q == 1}, {p, q}]

Out[11]= {{p é 0.691824,q é 0.251572}}

(Note that r is the interest rate for each period, not the
annual interest rate.)

The whole tree of state prices, for the case n=4, is:

In[12]:= n = 4;

p = solution[[1,1,2]];

q = solution[[1,2,2]];

statePrices =

Table[pˆ(j - 1)*qˆ(i - j),

{i, 1, n + 1}, {j, 1, i}];

MatrixForm[statePrices]

Out[12]=
{1}

{0.251572,0.691824}
{0.0632886,0.174044,0.47862}

{0.0159217,0.0437846,0.120408,0.331121}
{0.00400545,0.011015,0.0302912,0.0833009,0.229077}

Define the payoff function for the European call and

put options with exercise price X as:

In[13]:= Clear[payoffCall, payoffPut];

payoffCall[s_] := Max[s - X, 0];

payoffPut[s_] := Max[X - s, 0];

To find the price today of the option we sum all possi-
ble final payoffs at maturity (n ∫ 1) with weights given by
the corresponding state prices. Recall that the state price
today of each final node of the tree is exactly the price
one should pay for $1 received if and only if this state is
realized.

In[14]:= X = 45;

statePrices[[n + 1]] . payoffCall /@

stock[[n + 1]]

Out[14]= 8.29366

Note that the operator Map allows us to apply the func-
tion payoffCall to the whole list of stock prices at the
final day. This gives the list of final payoffs which we mul-
tiply (dot is a Mathematica operator for scalar product of
vectors) it by the vector (list) of the corresponding state
prices. The result is the price today of a EuropeanCall
option on the tree.

This method is very useful when the price today is the
only variable of interest and nothing important happens
in the intermediate dates (like dividends, splits, changes
in volatility or interest rates, early exercise, etc.).

Another way to calculate the price of a European op-
tion is to build a tree with all intermediate prices. This
gives much more flexibility since one can introduce dif-
ferent events in any intermediate date. We consider ex-
amples of this approach later.

The approach described above is very transparent but
not very efficient. We now show a more efficient way
which uses the same algorithm. Here we do not have
to guess the sizes of each period up and down jumps.
Instead we use the annual historical volatility and interest
rates.

In[15]:= Clear[up, down, R, P, Q,

EuropeanOption, EuropeanCall,

EuropeanPut, mean];

up[n_, sigma_, T_] :=

N[Exp[Sqrt[T/n]*sigma]];

down[n_, sigma_, T_] :=

1/up[n, sigma, T];

R[n_, Rf_, T_] := N[Exp[Rf*T/n]];

P[up_, down_, r_] :=

N[(r - down)/(up - down)/r];

Q[up_, down_, r_] :=

N[1/r - P[up, down, r]];

mean[m_List] := Plus @@ m/Length[m];

Vol. 6 No. 3 1997 Mathematica in Education and Research 5

T H E B I N O M I A L O P T I O N P R I C I N G M O D E L

Using these definitions we can write a simple function
which calculates the price of a European option:

In[16]:=

EuropeanOption[s_, sigma_, T_, Rf_,

exercise_Function, n_] :=

Module[{u = up[n, sigma, T],

d = down[n, sigma, T],

r = R[n, Rf, T], p, q},

p = P[u, d, r];

q = Q[u, d, r];

Sum[exercise[s*uˆj*d̂ (n - j)]*

Binomial[n, j]*pˆj*qˆ(n - j),

{j, 0, n}]];

The function EuropeanOption takes the current stock
price s, number of periods n, the annualized volatility
sigma, the time to maturity T (in years), the annual risk
free interest rate Rf, and the exercise function as ar-
guments. The internal variables u, d, r, p and q are
defined in a transparent way. The last operator takes the
sum over all possible final states of payoff with state prices
used as weights. We are able to give the precise formula
for state prices because of the assumption that everything
is stationary (constant volatility, interest rates, etc). This
was a description of a generic European type option. The
two most popular options—call and put can be calculated
as follows:

In[17]:= payoffCall[s_, X_] := Max[s - X, 0]

EuropeanCall[X_, s_, sigma_,

T_, Rf_, n_, Null] :=

EuropeanOption[s, sigma, T, Rf,

payoffCall, n]

However the Mathematica pure function Max[#-X,0]&
allows to us do this in a shorter way:

In[18]:=

EuropeanCall[s_, X_, sigma_, T_, Rf_, n_] :=

EuropeanOption[s, sigma, T, Rf,

Max[# - X, 0]&, n];

EuropeanPut[s_, X_, sigma_, T_, Rf_, n_] :=

EuropeanOption[s, sigma, T, Rf,

Max[X - #, 0]&, n];

This is exactly the definition of the European option
with the payoff at exercise functions corresponding to a
call and a put. Note that the # is used for an argument of
a pure function and the & sign is used to define a pure
function. For example we can calculate the values of the
following two options, both of which have s ± 50, X ± 45,
R ± 40%, T ± 1, and r ± 10%. In both cases we divide
the time T into 100 subintervals:

In[19]:= EuropeanCall[50, 45, 0.4, 1, 0.1, 100]

EuropeanPut[50, 45, 0.4, 1, 0.1, 100]

Out[19]= 12.7526

3.47028

AMERICAN OPTIONS WITHOUT DIVIDENDS
The pricing of American options differs from that of Euro-
pean options because of the early exercise option. When
it is optimal to exercise an American option? In principle
the answer is very simple. We know the price of the op-
tion if it is alive at the final day—it is given by the option
payoff function. A day before the final date we have a
dilemma whether to exercise the option or to wait. By
exercising early we obtain the option payoff given the
current stock price, and by leaving the option alive we
continue to hold an option whose value at the end of the
next day is its price in the up and down states tomorrow.
Denoting the state prices by p and q , the value of the
unexercised option one day before the terminal date is:

option payoff(next period,up)*p +
option payoff(next period,down)*q

This should be compared to the value of the option if
exercised one day before the terminal date:

option payoff(the current stock price).

The exercise decision depends on which of these two
values is higher.

Simple Model
Again we present first a transparent but not very efficient
model and then move to more object oriented functional
approach. The tree of stock prices and state prices are
the same. But now we have to calculate all intermediate
values of the option in order to decide whether to exercise
it prior to maturity.

Let’s prepare a table for values of the American option:

In[20]:= AO = Table[0, {i, 1, n + 1}, {j, 1, i}];

This is a list of lists of lengths 1‚ 2‚ . . . ‚ n ∫ 1—corre-
sponding to one node at the root, two nodes after one
period, etc. To assign values at maturity one can use either

In[21]:= AO[[n + 1]] =

Table[payoffCall[stock[[n + 1,j]]],

{j, 1, n + 1}];

or equivalently:

In[22]:= AO[[n + 1]] =

payoffCall /@ stock[[n + 1]];

Now we can run a backward induction pricing Amer-
ican option by choosing between a live option and its
intrinsic value:

In[23]:= For[nn = n, nn >= 1, nn–,

For[j = 1, j <= nn, j++,

AO[[nn,j]] =

Max[payoffCall[stock[[nn,j]]],

p*AO[[nn + 1,j + 1]] +

q*AO[[nn + 1,j]]]]];

Finally in the cell AO[[1,1]] we find the price today of
the option.

6 Mathematica in Education and Research Vol. 6 No. 3 1997

T H E B I N O M I A L O P T I O N P R I C I N G M O D E L

Structural Approach
Here is a more sophisticated example that is essentially
based on the same algorithm but uses a very powerful
tool—recursion.

In[24]:=

AmericanOption[s_, n_, sigma_,

T_, Rf_, exercise_Function] :=

Module[{u = up[n, sigma, T],

d = down[n, sigma, T],

r = R[n, Rf, T], p, q, OpRecurse},

p = P[u, d, r]; q = Q[u, d, r];

OpRecurse[node_, level_] :=

OpRecurse[node, level] =

If[level == n,

exercise[s*dˆnode*uˆ(level - node)],

Max[{p, q} . {OpRecurse[node, level + 1],

OpRecurse[node + 1, level + 1]},

exercise[s*dˆnode*uˆ(level - node)]]];

OpRecurse[0, 0]];

Here we first define AmericanOption as a function
of the same variables as before. The difference begins with
OpRecurse—recursive definition of the option price.

Here we define recursively the price. At level n we
use the exercise price as definition, at all other levels
one should choose the maximum between option alive
(weighted sum of the next period prices that are already
calculated) and its intrinsic value which is equal to the
final payoff calculated at the current stock value.

After the general definition of the AmericanOption

we can define the two widely used types of derivative
securities—AmericanCall and AmericanPut options.

In[25]:=

AmericanCall[X_, s_, n_, sigma_, T_, Rf_] :=

AmericanOption[s, n, sigma,

T, Rf, Max[#1 - X, 0] &];

AmericanPut[X_, s_, n_, sigma_, T_, Rf_] :=

AmericanOption[s, n, sigma,

mmT, Rf, Max[X - #1, 0] &];

This definition is similar to the one for European op-
tions. To calculate prices of options try:

In[26]:= AmericanCall[50, 50, 30, 0.4, 0.5, 0.1]

AmericanPut[50, 50, 30, 0.4, 0.5, 0.1]

Out[26]= 6.74401

4.58748

Our next article will continue the discussion of bino-
mial option pricing models. We will show how to price
options when the underlying security pays dividends, how
to determine the optimal exercise boundary, and how to
price exotic (path dependent) options.

A COURSE IN FINANCIAL ENGINEERING
For the past several years we have been teaching a course
in “Financial Engineering” at the Hebrew University in
Israel. The course covers advanced financial program-
ming and uses Mathematica as its primary computing and

teaching vehicle. Students in the course include both un-
dergraduates and MBAs; our prerequisites are that all stu-
dents have some prior finance courses (an introductory
options course is the minimum requirement) and some
“mathematical sophistication”—meaning that they do not
startle when confronted by a matrix or an integral sign.
The course has been very successful. Students enjoy learn-
ing how to implement computationally intricate finance
models. As might be suspected, computation turns out to
be not merely a goal, but leads to a greater understanding
of the finance models themselves. This is the first of a
series of articles based on our course. The articles cover
a variety of topics in option and bond pricing; their order
and level corresponds roughly to the first 10 weeks of
a semester. While we will explain the advanced finance
topics covered in the articles, we will assume some ac-
quaintance with basics. The subjects we will cover will
include:

í Binomial option pricing models

í Black-Scholes option pricing

í Simulating stock prices and dynamic hedging strategies

í Risk management

í Portfolio insurance strategies

í Term structure models

In planning and implementing the course, we have
benefited from a series of grants from the Krueger Center
for Finance and Banking of the Hebrew University.

REFERENCES
, ., Financial Modeling . MIT Press (1997).

, ., , ., , ., “Implementing Numerical
Option Pricing Models”, Mathematica Journal 3:4, pp. 66–73, 1993.

, ., , ., , ., “Generalized Theory of Rational
Option Pricing,” Journal of Finance 51:5, pp. 1573–1610, 1996.

, . ., , . ., , . (1979). “Option Pricing: A Sim-
plified Approach,” Journal of Financial Economics 7, pp. 229-263.

 ., Options, Futures, and Other Derivatives, third edition, Prentice
Hall, 1997.

, ., “A Note On The Convergence Of Binomial-Pricing And
Compound-Option Models,” Journal of Finance, 1987, v42(2), 463-469.

ABOUT THE AUTHORS
Simon Benninga is a professor of finance at Tel-Aviv University (Is-
rael) and the Wharton School of the University of Pennsylvania. He
has published academic papers in many areas of finance. His newest
book, Financial Modeling, will be published by MIT Press in October
1997. He is the author of Numerical Techniques in Finance (MIT Press,
1989) and Corporate Finance: A Valuation Approach (with Oded Sarig,
McGraw-Hill, 1997). Benninga is the editor of the European Finance
Review.

Simon Benninga
Wharton School, University of Pennsylvania
benninga@wharton.upenn.edu
http://finance.wharton.upenn.edu/ benninga

Vol. 6 No. 3 1997 Mathematica in Education and Research 7

T H E B I N O M I A L O P T I O N P R I C I N G M O D E L

Zvi Wiener is an assistant professor in the Finance Department of the
Business School at the Hebrew University in Jerusalem, Israel. He is
currently visiting professor of finance at the Olin School of Business
at Washington University, St. Louis. After receiving his Ph.D. in math-
ematics from the Weizmann Institute, he was a postdoctoral fellow at
the Wharton School of the University of Pennsylvania and subsequently
worked in the financial derivatives research group at Lehman Brothers.
His finance research concentrates on the pricing of derivative securities,
value at risk, computational finance, and stochastic dominance.

Zvi Wiener
Finance Department, Business School
Hebrew University, Jerusalem, Israel
msweiner@pluto.mscc.huji.ac.il
http://pluto.mscc.huji.ac.il/ mswiener/zvi.html

ELECTRONIC SUBSCRIPTIONS
Included in the distribution for each electronic subscription is the file
BinomialOption.nb containing Mathematica code for the material
described in this article.

8 Mathematica in Education and Research Vol. 6 No. 3 1997

T H E B I N O M I A L O P T I O N P R I C I N G M O D E L

Vol. 6 No. 3 1997 Mathematica in Education and Research 9

