
CHAPTER CONTENTS
Overview 68
3.1. Don't Trust the Quoted Interest Rate-Three Examples 70
3.2. Calculating the Cost of a Mortgage 73
3.3. Mortgages with Monthly Payments 77
3.4. Lease or Purchase? 81
3.5. Auto Lease Example 84
3.6. More-Than-Once-a-Year Compounding and the EAIR 90
3.7. Continuous Compounding and Discounting (Advanced Topic) 93
Summing Up 97
Exercises 97
In Chapter 2 we introduced the basic tools of financial analysis-present value (PV), net present value (NPV), and internal rate of return (IRR). In Chapters 3-7 we use these tools to answer two basic types of questions:

- What is it worth? Presented with an asset-this could be a stock, a bond, a real estate investment, a computer, or a used car-we would like to know how to value the asset. The finance tools used to answer this question are mostly related to the concept of present
Overview
value (PV) and net present value (NPV). The basic principle is that the value of an asset is the present value of its future cash flows. Comparing this present value to the asset's price tells us whether we should buy it. We introduced PV and NPV in Chapter 2 and we return to them and their applications in Chapter 4.
- What does it cost? This sounds like an innocuous question—after all, you usually know the price of the stock, bond, real estate investment, or used car you're trying to value. But many interesting questions of financing alternatives depend on the relative interest costs of each alternative. For example, should you pay cash for a car or borrow money to pay for it (and hence make a series of payments over time)? Should you lease that new computer you want or buy it outright? Or perhaps borrow money from the bank to buy it? It's all clearly a question of cost-you'd like to pick the alternative that costs the least.

The tools used for the second question-What does it cost?-are mostly derived from the concept of internal rate of return (IRR). This concept—introduced in Chapter 2-measures the compound rate of return of a series of cash flows. In this chapter we'll show you that rate of return, when properly used, can be used to measure the cost of financing alternatives. The main concept presented in this chapter is the effective annual interest rate (EAIR), a concept based on the annualized IRR that you can use to compare financing alternatives.

Much of the discussion in this chapter relates to calculating the EAIR and showing its relation to the IRR. We show that the EAIR is a much better gauge of the financing costs than the annualized percentage rate (APR), the financing cost often quoted by many lenders such as banks and credit card companies. We show you how to apply this concept to credit-card borrowing, mortgages, and auto leasing. A case that comes with this book applies the concept to student loans.

Finance Concepts Discussed

- Effective annual interest rate (EAIR)
- Internal rate of return (IRR)
- Annual percentage rate (APR)
- Loan tables
- Mortgage points
- Lease versus purchase

Excel Functions Used

- IRR
- PMT, IPMT, and PPMT
- Rate
- NPV
- PV
- Exp
- Ln
- Sum
- Goal Seek

3.1. Don't Trust the Quoted Interest Rate-Three Examples

To set the stage for the somewhat more complicated examples in the rest of the chapter, we start with three simple examples. Each example shows why quoted interest rates are not necessarily representative of costs.

We use the three examples in this section to introduce the concept of EAIR.
The effective annual interest rate (EAIR) is the annualized internal rate of return (IRR) of the cash flows of a particular credit arrangement or security.

Example 1: Borrowing from a Bank

In finance "cost" often refers to an interest rate: "I'm taking a loan from the West Hampton Bank because it's cheaper-West Hampton charges 8% instead of the 9% charged by the East Hampton Bank." This is a sentence we all understand- 8% interest results in lower payments than 9\% interest.

But now consider the following alternatives. You want to borrow $\$ 100$ for 1 year, and you've investigated both the West Hampton Bank and the East Hampton Bank:

- West Hampton Bank is lending at 8% interest. If you borrow $\$ 100$ from them today, you'll have to repay them $\$ 108$ in 1 year.
- The East Hampton Bank is willing to lend you any amount you want at a 6% rate. BUT: East Hampton Bank has a "loan initiation charge" of 4%. What this means is that for each $\$ 100$ you borrow, you'll get only $\$ 96$, even though you'll pay interest on the full $\$ 100 .{ }^{1}$

Obviously the cost of West Hampton's loan is 8%. But is this cheaper or more expensive than the East Hampton loan? You reason as follows: To actually get $\$ 100$ in your hands from East Hampton, you'll have to borrow \$104.17; after they deduct their 4% charge, you'll be left with $\$ 100$ in hand, which is exactly what you need $(96 \% * 104.17=100)$. At the end of a year, you'll owe East Hampton Bank $\$ 104.17+6 \%$ interest $=\$ 110.42$. So the actual interest rate they're charging you (the effective annual interest rate) is $E A I R=\frac{110.42}{100}-1=10.42 \%$.

	A	B	C	D
1	CHEAPER LOAN: WEST HAMPTON OR EAST HAMPTON?			
2		West Hampton	East Hampton	
3	Quoted interest rate	8\%	6\%	
4	Initial charges	0\%	4\%	
5	Amount borrowed to get $\$ 100$ today	100.00	104.17	<-- =100/(1-C4)
6				
7	Date	Cash flow	Cash flow	
8	Date 1, get loan	100.00	100.00	
9	Date 2, pay it back	-108.00	-110.42	<-- =-C5*(1+C3)
10	Effective annual interest rate, EAIR	8.00\%	10.42\%	<-- =IRR(C8:C9)

[^0]This makes everything easier-West Hampton's 8% loan (EAIR $=8 \%$) is actually cheaper than East Hampton's " 6% " loan (EAIR $=10.42 \%$).

Note in this example that the EAIR is just an IRR, adjusted for the cost taking the loan from East Hampton. EAIR is always an interest rate, but usually with some kind of adjustment.

The lesson of Example 1: When calculating the cost of financial alternatives, you must include the fees, even if the lender (in our case East Hampton Bank) fudges this issue.

Example 2: Monthly versus Annual Interest

You want to buy a computer for $\$ 1,000$. You don't have any money, so you'll have to finance the computer by taking out a loan for $\$ 1,000$. You've got two financing alternatives:

- Your bank will lend you the money for 15% annual interest. When you ask the bank what this means they assure you that they will give you $\$ 1,000$ today and ask you to repay $\$ 1,150$ at the end of 1 year.
- Loan Shark Financing Company will also lend you the $\$ 1,000$. Their ads say " 14.4% annual percentage rate (APR) on a monthly basis." When you ask them what this means, it turns out that Loan Shark charges 1.2% per month (they explain to you that
$\frac{14.4 \%}{12}=1.2 \%$. This means that each month Loan Shark adds 1.2% to the loan balance outstanding at the end of the previous month:

By the end of the year, you will owe Loan Shark \$1,153.89.

Because this is more than the $\$ 1,150$ you will owe the bank, you should prefer the bank loan.

72 PART ONE CAPITAL BUDGETING AND VALUATION

The effective annual interest rate (EAIR) of each loan is the annualized interest rate charged by the loan. The bank charges you 15% annually and the loan shark charges you 15.39% annually:

	A	B	C	D
1	THE BANK OR LOAN SHARK?			
2		Bank	Loan Shark	
3	Quoted interest rate	15.0\%	14.4\%	
4	Borrow today	\$ 1,000.00	\$ 1,000.00	
5	Repay in one year	-\$1,150.00	-\$1,153.89	<-- =-C4* $1+\mathrm{C} 3 / 12)^{\wedge} 12$
6	Effective annual interest rate, EAIR	15.00\%	15.39\%	<-- = IRR(C4:C5)
7				
8	A second way to compute the EAIR			
9	Monthly interest rate		1.20\%	<-- = 3 3/12
10	EAIR Annualized monthly rate		15.39\%	<-- =(1+C9)^12-1

Cells C9 and C10 show another way to compute the 15.39% EAIR charged by the loan shark. Cell C9 computes the monthly rate charged by the loan shark as 1.20%, and cell C10 annualizes this rate $\left(1+\frac{14.4 \%}{12}\right)^{12}-1=15.39 \%$ Thus, there are two ways to compute the
EAIR.

$$
E A I R=15.39 \%= \begin{cases}\frac{\text { Payment at end of year }}{\text { Loan taken out beginning of year }}-1=\frac{\$ 1,153.89}{\$ 1,000.00}-1 & \leftarrow \text { Cell C6 } \\ \left(1+\frac{14.4 \%}{12}\right)^{12}-1 & \leftarrow \text { Cell C10 }\end{cases}
$$

The lesson of Example 2: The annual percentage rate (APR) does not always correctly reflect the costs of borrowing. To compute the true cost, calculate the effective annual interest rate (EAIR).

Example 3: An "Interest Free" Loan

You're buying a used car. The Junkmobile your heart desires has a price tag of \$2,000. You have two financing options:

- The dealer explains that if you pay cash you'll get a 15% discount. In this case you'll pay $\$ 1,700$ for the car today. Because you don't have any money now, you intend to borrow the $\$ 1,700$ from your Uncle Frank, who charges 10% interest.
- On the other hand, the dealer will give you " 0% financing": You don't pay anything now, and you can pay the dealer the full cost of the Junkmobile at the end of the year.

Thus, you have two choices: The dealer's 0\% financing and Uncle Frank's 10\% rate. Which is cheaper?

A little thought will show that the dealer is actually charging you an effective annual interest rate (EAIR) of 17.65% : His " 0% financing" essentially involves a loan to you of $\$ 1,700$ with an end-year repayment of $\$ 2,000$:

	A	B	C	D	E
1	FINANCING THE JUNKMOBILE				
2	Year	Pay cash	$\begin{array}{\|c\|} \hline \text { Dealer's } \\ \text { "0\% } \\ \text { financing" } \\ \hline \end{array}$	Differential cash flow	
3	0	-1,700	0	1,700	<-- =C3-B3
4	1		-2,000	-2,000	<-- =C4-B4
5					
6	Effective annual interest rate (EAIR) charged by dealer			17.65\%	<-- =IRR(D3:D4)

Uncle Frank's EAIR is 10% : He will loan you $\$ 1,700$ and have you repay only $\$ 1,870$. So you're better off borrowing from him.

The lesson of Example 3: Free loans are usually not free! To compute the cost of a "free" loan, calculate the EAIR of the differential cash flows.

3.2. Calculating the Cost of a Mortgage

Now that we've set the stage, we'll proceed to a series of somewhat more complicated examples. We start with a mortgage. Housing is most often the largest personal asset an individual owns. Financing housing with a mortgage is something almost every reader of this boo k will do in his or her lifetime. Calculating the cost of a mortgage is thus a useful exercise. In this chapter mortgages will be one of the examples we use to illustrate the problems encountered in computing the cost of financial assets.

A Simple Mortgage

We start with a simple example. Your bank has agreed to give you a $\$ 100,000$ mortgage, to be repaid over 10 years at 8% interest. For simplicity, we assume that the payments on the mortgage are annual. ${ }^{2}$ The bank calculates the annual payment as $\$ 14,902.95$, using Excel's PMT function:

The PMT function calculates an annuity payment (a constant periodic payment) that pays off a loan:

$$
100,000=\sum_{t=1}^{10} \frac{14,902.95}{(1.08)^{t}}=\frac{14,902.95}{(1.08)}+\frac{14,902.95}{(1.08)^{2}}+\frac{14,902.95}{(1.08)^{3}}+\ldots+\frac{14,902.95}{(1.08)^{10}}
$$

[^1]
DIALOG BOX FOR PMT FUNCTION

The dialog box for Excel's PMT function: Rate is the interest rate on the loan, Nper is the number of repayment periods, and $\mathbf{P v}$ is the loan principal. As discussed in Chapter 2, if the loan principal is written as a positive number, Excel presents the payment as a negative number; to avoid this, we write $\mathbf{P v}$ as a negative number.

We can summarize all of this in an Excel spreadsheet:

	A	B	C
1	A SIMPLE MORTGAGE		
2	Mortgage principal	100,000	
3	Interest rate	8\%	
4	Mortgage term (years)	10	
5	Annual payment	\$14,902.95	<-- =PMT(B3,B4,-B2)
6			
7	Year	Mortgage cash flow	
8	0	100,000.00	
9	1	-14,902.95	<-- =-\$B\$5
10	2	-14,902.95	
11	3	-14,902.95	
12	4	-14,902.95	
13	5	-14,902.95	
14	6	-14,902.95	
15	7	-14,902.95	
16	8	-14,902.95	
17	9	-14,902.95	
18	10	-14,902.95	
19			
20	Effective annual interest rate (EAIR)	8.00\%	<-- =IRR(B8:B18)

The EAIR of this particular mortgage is simply the internal rate of return of its payments. Because the payments on the mortgage are annual, the IRR in cell B20 is already in annual terms.

The Bank Charges "Mortgage Points"

As in the previous example, you've asked the bank for a $\$ 100,000$ mortgage. They've agreed to give you this mortgage, and they've explained that you'll be asked to repay $\$ 14,902.95$ per year for the next 10 years. However, when you get to the bank, you learn that the bank has deducted "1.5 points" from your mortgage. What this means is that you only get $\$ 98,500(\$ 100,000$ minus 1.5%). Your payments, however, continue to be based on a principal of $\$ 100,000 .{ }^{3}$ You realize immediately that this mortgage is more expensive than the mortgage discussed in the previous subsection. The question is: by how much is it more expensive? By calculating the EAIR on the mortgage we can answer this question. The calculation below shows that you're actually paying 8.34\% interest annually.

	A	B	C
1	A MORTGAGE WITH POINTS		
2	Mortgage principal	100,000	
3	"Points"	1.50\%	
4	Quoted interest	8.00\%	
5	Mortgage term (years)	10	
6	Annual payment	\$14,902.95	<-- =PMT(B4,B5,-B2)
7			
8	Year	Mortgage cash flow	
9	0	98,500.00	<-- = B2*(1-B3)
10	1	-14,902.95	<-- =-\$B\$6
11	2	-14,902.95	
12	3	-14,902.95	
13	4	-14,902.95	
14	5	-14,902.95	
15	6	-14,902.95	
16	7	-14,902.95	
17	8	-14,902.95	
18	9	-14,902.95	
19	10	-14,902.95	
20			
21	Effective annual interest rate (EAIR)	8.34\%	<-- = IRR(B9:B19)

Note that the EAIR of 8.34% is the IRR of the stream of payments consisting of the actual loan amount $(\$ 98,500)$ versus the actual payments you're making ($\$ 14,902.95$ annually). Here's the calculation:

$$
98,500=\sum_{t=1}^{10} \frac{14,902.95}{(1.0834)^{t}}=\frac{14,902.95}{(1.0834)}+\frac{14,902.95}{(1.0834)^{2}}+\frac{14,902.95}{(1.0834)^{3}}+\ldots+\frac{14,902.95}{(1.0834)^{10}}
$$

[^2]At the end of each year, you will report to the Internal Revenue Service the amount of interest paid on the mortgage. Because this interest is an expense for tax purposes, it's important to get it right. To calculate this interest, we need a loan table, which allocates the each year's payment made between interest and repayment of principal (see Section 2.5, page 000). This table is sometimes called an "amortization table" ("amortize" means to repay with a series of periodic payments):

	A	B	C	D	E	F	
21	Effective annual interest rate 8.34%		<-- =IRR(B9:B19)				
22							
23	MORTGAGE AMORTIZATION TABLE						
24	Year	Mortgage principal at beginning of year		B25-E25 Payment at end of year	Part of payment that is interest (expense for taxes!)	Part of payment that is repayment of principal (not an expense for tax purposes)	
25	1	98,500.00	\$14,902.95	\$8,211.41	6,691.54	<-- =C25-D25	
26	2	91,808.46	\$14,902.95	\$7,653.58	7,249.37		
27	3	84,559.09	\$14,902.95	\$7,049.23	7,853.71		
28	4	76,705.38	\$14,902.95	\$6,394.51	8,508.44		
29	5	68,196.94	\$14,902.95	\$5,685.21	9,217.74		
30	6	58,979.20	\$14,902.95	\$4,916.78	9,986.17		
31	7	48,993.03	\$14,902.95	\$4,084.28	10,818.66		
32	8	38,174.37	\$14,902.95	\$3,182.39	11,720.56		
33	9	26,453.81	\$14,902.95	\$2,205.31	12,697.64		
34	10	13,756.17	\$14,902.95	\$1,146.78	13,756.17		

Column D of the table gives the interest expense for tax purposes. If you report interest payments on your tax return, this is the payment you'd be allowed to report. Note that the interest portion of the annual $\$ 14,902.95$ payments gets smaller over the years, whereas the repayment of the principal portion (which is not deductible for tax purposes) gets larger.

Calculating the Individual Payments with IPMT and PPMT

The above spreadsheet gives the intuition behind the loan table and the split between interest and principal of each payment. The interest and repayment-of-principal payments can be computed directly using the Excel functions IPMT and PPMT. This is illustrated below. ${ }^{4}$

[^3]CHAPTER 3 What Does It Cost? IRR and the Time Value of Money

Here is the dialog box for IPMT in cell D9 (the syntax of PPMT is similar). Note that Per specifies the specific period for which the interest is calculated:

Function Arguments

IPMT

Returns the interest payment for a given period for an investment, based on periodic, constant payments and a constant interest rate.

Rate is the interest rate per period. For example, use $6 \% / 4$ for quarterly payments at 6% APR.

```
Formula result = $11,000.00
```

Help on this function

3.3. Mortgages with Monthly Payments

We continue with the mortgage examples from Section 3.2. This time we introduce the concept of monthly payments. Suppose you get a $\$ 100,000$ mortgage with an 8% interest rate, payable
monthly, and suppose you have to pay the mortgage back over 1 year (12 months). ${ }^{5}$ Many banks interpret the combination of 8% annual interest and "payable monthly" to mean that the monthly interest on the mortgage is $\frac{8 \%}{12}=0.667 \%$. This is often referred to as "monthly compounding," although the usage of this term is not uniform. To compute the monthly repayment on the mortgage, we use Excel's PMT function:

	A	B	C
1	MORTGAGE WITH MONTHLY PAYMENTS		
2	Loan principal	100,000	
3	Loan term (years)	1	
4	Quoted interest rate	8\%	
5			
6	Month	Cash flow	
7	0	100,000.00	
8	1	-8,698.84	<-- =PMT(\$B\$4/12,\$B\$3*12,\$B\$2)
9	2	-8,698.84	
10	3	-8,698.84	
11	4	-8,698.84	
12	5	-8,698.84	
13	6	-8,698.84	
14	7	-8,698.84	
15	8	-8,698.84	
16	9	-8,698.84	
17	10	-8,698.84	
18	11	-8,698.84	
19	12	-8,698.84	
20			
21	Monthly IRR	0.667\%	<-- =IRR(B7:B19)
22	Effective annual interest rate, EAIR	8.30\%	<-- =(1+B21)^12-1

The EAIR on the mortgage in the example is computed by using Excel's IRR function (cell B21). In our case the IRR function will give a monthly interest rate of 0.667% (we already
knew this because $\frac{8 \%}{12}=0.667 \%$. Annualizing this gives $8.30 \%=\left(1+\frac{8 \%}{12}\right)^{12}-1$ (cell B22).

Mortgages: A More Complicated Example

As we saw in Section 3.1, many mortgages in the United States have "origination fees" or "discount points" (the latter are often just called "points"). All of these fees reduce the initial amount given to you by the bank, without reducing the principal on which the bank computes its payments (sounds misleading, doesn't it?).

As an example, consider the above 12-month mortgage with an 8% annual rate, payable monthly, but with an origination fee of 0.5% and 1 point. This means that you actually get

[^4]$\$ 98,500$ ($\$ 100,000$ minus $\$ 500$ for the origination fee and $\$ 1,000$ for the point), but that your monthly repayment remains $\$ 8,698.84$:

| | A | B | C |
| ---: | :--- | ---: | :--- | :--- |
| | MORTGAGE EXAMPLE WITH POINTS AND | | |
| 1 | | ORIGINATION FEE | |

The monthly IRR (cell B23) is the interest rate that sets the present value of the monthly payments equal to the initial $\$ 98,500$ received:

$$
\$ 98,500=\frac{\$ 8,698.94}{(1+0.9044 \%)}+\frac{\$ 8,698.94}{(1+0.9044 \%)^{2}}+\frac{\$ 8,698.94}{(1+0.9044 \%)^{3}}+\ldots+\frac{\$ 8,698.94}{(1+0.9044 \%)^{12}} .
$$

EAIR $=11.41 \%=(1+0.9044 \%)^{12}-1$ is the annualized cost of the mortgage payments.
As you can see in cell B26, Excel's Rate function will also calculate the monthly IRR that we've calculated in cell B23:

EXCEL NOTE: CALCULATING THE MONTHLY IRR WITH RATE

The Rate function computes the IRR of a series of constant (the financial jargon is "flat" or "even") payments so that the discounted value equals the PV indicated. Note that in the Rate function the signs of the payments (indicated by $\mathbf{P m t}$) and the $\mathbf{P v}$ of these payments must be different. This is a feature Rate shares with Excel functions like PMT and PV, discussed in Chapter 2.

Longer-Term Mortgages

Suppose the mortgage in the previous example has a 30-year term (meaning: $360=30 * 12$ repayments). Each repayment would be $\$ 733.76$ and the EAIR would be 8.4721% :

	A	B	C
1	30-YEAR MORTGAGE with points and origination fee		
2	Loan principal	100,000.00	
3	Loan term (years)	30	
4	Quoted interest rate	8\%	
5	Discount points	1	
6	Origination fee	0.5\%	
7			
8	Initial amount of loan, net of fees	98,500.00	<-- = ${ }^{\text {B2* }}$ (1-B5/100-B6)
9	Monthly repayment	733.76	<-- =PMT(B4/12,B3*12,-B2)
10			
11	Calculating the EAIR		
12	Monthly interest rate	0.6800\%	<-- =RATE(B3*12,B9,-B8)
13	Effective annual interest rate (EAIR)	8.4721\%	<-- =(1+B12)^12-1

We've used PMT to calculate the payment and Rate to compute the monthly interest rate. The EAIR is computed in the usual manner-by compounding the monthly payments (cell B13).

Note that the effect of the initial mortgage fees on mortgage EAIR declines when the mortgage is longer term:

- For the 1-year mortgage discussed previously, the 1.5% initial fee increased the EAIR of the mortgage from 8 to 11.41%.
- For the 30-year mortgage discussed above, the same initial fees increase the EAIR from 8 to 8.4721%.
- The reason that the fees have a smaller effect for the second mortgage is that they are spread out over a much longer term.

3.4. Lease or Purchase?

This section uses the concepts of present value and internal rate of return to explore the relative advantages of leasing versus buying an asset. As you will see, the choice between leasing and buying basically comes down to choosing the cheaper of two methods of financing.

Here's our terminology: A lease is a rental agreement; in our examples leases will usually be for equipment (we discuss a computer lease and a car lease), but the analysis for real-estate is virtually the same. The party that rents the asset and uses it is called the lessee and the owner of the asset is called the lessor.

A Simple Lease Example

You need a new computer, but you can't decide whether you should buy it or lease it. The computer costs $\$ 4,000$. The lessor is your neighborhood computer leasing company, which offers to lease you the computer for $\$ 1,500$ per year. The lessor's conditions are that you make four payments of $\$ 1,500$: the first payment at the start of the lease (time 0) and subsequent payments at the end of years 1,2 , and 3 . Based on past experience, you know that you will keep your new computer for about 3 years. One additional fact: you can borrow from your bank at 15%.

Here is a spreadsheet with the cash flows for the lease and for the purchase:

	A	B	C	D
1	BASIC LEASE VERSUS PURCHASE			
2	Asset cost	4,000.00		
3	Annual lease payment	1,500.00		
4	Bank rate	15\%		
5				
6	Year	Purchase cash flow	Lease cash flow	
7	0	4,000.00	1,500.00	
8	1		1,500.00	
9	2		1,500.00	
10	3		1,500.00	
11				
12	PV of costs	4,000.00	4,924.84	<-- =C7+NPV(\$B\$4,C8:C10)
13	Lease or purchase?	purchase		<-- =IF(B12<C12,"purchase","lease")

To decide whether the lease is preferable, we discount the cash flows from both the lease and the purchase at the 15% bank lending rate. We write the outflows as positive numbers, so that the PV in row 12 is the present value of the costs. As you can see in cell B12, the PV of the
lease costs is $\$ 4,924.84$, which is more than the $\$ 4,000$ cost of purchasing the computer. Thus, you prefer the purchase, which is less costly.

There's another way of doing this same calculation. We compute the IRR of the differential cash flows-subtracting the lease cash flow from the purchase cash flow in each of the years:

	A	B	C	D	E
1	BASIC LEASE VERSUS PURCHASE THE DIFFERENTIAL CASH FLOWS				
2	Asset cost	4,000			
3	Annual lease payment	1,500			
4	Bank rate	15\%			
5					
6	Year	Purchase cash flow	Lease cash flow	Differential cash flow	
7	0	4,000	1,500	2,500	<-- = B7-C7
8	1		1,500	-1,500	<-- = B8-C8
9	2		1,500	-1,500	<-- = B9-C9
10	3		1,500	-1,500	<-- = B10-C10
11					
12	IRR of differential cash flows			$\begin{aligned} & 36.31 \% \\ & \text { purchase } \end{aligned}$	<-- =IRR(D7:D10)
13	Lease or purchase?				<-- =IF(D12>B4,"purchase","lease")
14					
15	Explanation: The lease is like a loan--you save 2,500 in year 0 and pay back 1,500 in each of years 1-3. The IRR of this "loan" is 36.31%.				

The computer lease is equivalent to paying $\$ 1,500$ for the computer in year 0 and taking a loan of $\$ 2,500$ from the computer leasing company. The computer leasing "loan" has three equal repayments of $\$ 1,500$ and an IRR of 36.31%. Because you can borrow money from the bank at 15%, you would prefer to purchase the computer with borrowed money from the bank (at 15\%) rather than "borrowing" $\$ 2,500$ from the leasing company, which charges 36.31%.

In the spreadsheet below you can see another way to make this same point. If you borrowed $\$ 2,500$ from the bank at 15%, you'd have to pay back $\$ 1,094.94$ per year for each of the next 3 years (assuming the bank asked for a flat repayment schedule). This is substantially less than the $\$ 1,500$ that the computer lessor asks for on the same loan.

$$
2,500=\frac{1,094.94}{1.15}+\frac{1,094.94}{(1.15)^{2}}+\frac{1,094.94}{(1.15)^{3}} .
$$

The conclusion is that if you decide to borrow $\$ 2,500$ to purchase the computer, you should do so from the bank rather than from the computer leasing company. In the spreadsheet, we've used the Excel PMT function to compute the repayment:

	A	B	C	D	E
17	What if you borrowed \$2,500 from the bank?				
	Year	Money saved by leasing		Same amount from bank	
19	0	2,500		$2,500.00$	
20	1	$-1,500$		$-1,094.94$	$<--=$ PMT(\$B\$4,3,\$D\$19)
21	2	$-1,500$		$-1,094.94$	
22	3	$-1,500$	$-1,094.94$		

What Have We Assumed about Leasing versus Purchasing?

The leasing example we've considered above illustrates the spirit of lease/purchase analysis. The example makes some simplifying assumptions that are worth noting:

- No taxes: When corporations lease equipment, the lease payments are expenses for tax purposes; when these corporations buy assets, the depreciation on the asset is an expense for tax payments. Taxes complicate the analysis somewhat; the case of leasing with taxes is considered in Chapter 5.
- Operational equivalence of lease and purchase: In our analysis we don't ask whether you need a computer-we assume that you've already answered this question positively, so that only the method of acquisition is in question. Our analysis also assumes that any maintenance or repairs that need to be done on the computer will be done by you, whether you lease or buy the computer.
- No residual value: We've assumed that the asset (in this case, the computer) is worthless at the end of the lease term.

We explore the last point briefly. Suppose you think that the computer will be worth $\$ 800$ at the end of year 3. Then-as shown below-the purchase cash flows change, so that owning the computer gives you an inflow of $\$ 800$ in year $3 .{ }^{6}$ The cost of purchasing the computer is reduced (the present value of the purchase is now $\$ 3,304$) and the lease alternative becomes even less attractive than the purchase. Another way of seeing this is to look at the IRR of the differential cash flows, which is now 45.07% (cell B23). ${ }^{7}$

	A	B	C	D
1	LEASE VERSUS PURCHASE WITH RESIDUAL VALUE			
2	Asset cost	4,000.00		
3	Annual lease payment	1,500.00		
4	Residual value, yr. 3	800	<-- Value of computer at end year 3	
5	Bank rate	15\%		
6				
7	Year	Purchase cash flow	Lease cash flow	
8	0	4,000.00	1,500.00	
9	1		1,500.00	
10	2		1,500.00	
11	3	-800.00	1,500.00	
12				
13	PV of costs	3,304.35	4,924.84	<-- =C8+NPV(\$B\$5,C9:C11)
14	Lease or purchase?		purchase	<-- =IF(B13<C13,"purchase","lease")
15				
16	Calculating the IRR of the differential cash flow			
17	Year		Money saved by leasing	
18	0		2,500.00	<-- = B8-C8
19	1		-1,500.00	<-- = B9-C9
20	2		-1,500.00	
21	3		-2,300.00	
22				
23	IRR of differential		45.07\%	<-- =IRR(C18:C21)
24	Lease or purchase?		purchase	<-- =IF(C23>B5,"purchase","lease")

[^5]
3.5. Auto Lease Example

Here's a slightly more realistic (and more complicated) example of leasing: You've decided to get a new car. You can either lease the car or buy it; if you decide to buy the car, you can finance with a 3% bank loan. The relevant facts are given in the spreadsheet below, but we'll summarize them here:

- The manufacturer's suggested retail price (MSRP) for the car is $\$ 24,550$, but you've been able to negotiate a price of $\$ 22,490$ with the dealer. ${ }^{8}$ In the jargon of the car leasing business, the $\$ 22,490$ is referred to as the "capitalized cost." To this price must be added a destination charge of $\$ 415$, so that you end up paying $\$ 22,905$ if you purchase the car. This price represents your alternative purchase cost if you decide to buy instead of lease the car.
- The dealer has offered you the following lease terms:
- You pay $\$ 1,315$ at the signing of the lease. The dealer explains that this is the total of $\$ 415$ "destination charge," $\$ 450$ "acquisition fee," and a $\$ 450$ security deposit. The security deposit will be refunded at the end of the lease.
- You will pay $\$ 373.43$ per month for the next 24 months. In month 24 you get your security deposit of $\$ 450$ back.
- You guarantee that the car will have a residual value of $\$ 13,994$ at the end of the lease. The dealer has based this value on 57% of the MSRP. What this means is that if the car is worth less than $\$ 13,994$ at the end of the 24th month, the lessee (you) will make up the difference. ${ }^{9}$ The end-lease payment associated with this residual can be written as:
End-lease residual payment $=\left\{\begin{array}{cc}\text { 13,994- market value } & \text { if market value }<\text { 13,994 } \\ 0 & \text { otherwise }\end{array}\right.$
Another way of writing this payment is $\operatorname{Max}(13,994$ - market value, 0$)$. The $\max (A, B)$ notation means that you pay the larger of A or B. Conveniently, Max is also a function in Excel.
The residual value turns out to be an important factor in the way you view leasing versus purchase. We'll devote more time to it later. For the moment, let's assume that you think the car will actually be worth $\$ 15,000$ at the end of 2 years so your last payment on the lease is
zero:

$$
\begin{aligned}
\text { End-lease residual payment } & =\operatorname{Max}(13,994-\text { market value, } 0) \\
& =\operatorname{Max}(13,994-15,000,0)=\operatorname{Max}(-1,006,0)=0
\end{aligned}
$$

All of the lease costs are listed in column C of the spreadsheet below. To evaluate these costs, look at column D, which shows the costs associated with buying the car; there are only

[^6]two: the initial purchase price of the car ($\$ 22,490+$ the destination cost of $\$ 415=\$ 22,905$) and what you anticipate will be the market value of the car at the end of the lease term (in the example below, you think the car will actually be worth $\$ 15,000$). Because we've used the convention of making costs positive numbers, the inflow from selling the car is a negative number.

This last number bears some examination: If you lease, your last payment is

$$
\begin{aligned}
\text { last lease payment }= & \text { last month' s rental }- \text { return of security deposit } \\
& + \text { end-of-lease residual payment } \\
= & 373.43-450+\operatorname{Max}(13,994-\text { market value }, 0)
\end{aligned}
$$

If you're right, and the actual market value of the car is $\$ 15,000$, then your last "payment" is $-\$ 76.57$ (meaning that you'll get $\$ 76.57$ back from the lease company).

Column E in the spreadsheet subtracts the lease from the purchase cash flows. Initially, the lease saves you $\$ 21,590$; in months $1-23$, the lease costs you $\$ 373.43$ more than the purchase, and at the end of month 24 the lease costs you $\$ 14,923.43$ more than the purchase.

The monthly IRR of the differential cash flows is 0.44%, which gives an EAIR of 14.36% (cells E44 and E45).

Should you buy or should you lease? It depends on your alternative cost of financing. If you can finance at a bank for less than 5.39%, then you should buy the car; otherwise, the lease looks like a good deal. In our case you can finance at the bank for 3% (cell B48), so you should buy the car with a bank loan instead of leasing it.

The Role of the Residual

The residual value of the car is very important in determining the cost of the lease. To illustrate this we use the Data|Data Tools|What-if Analysis|Data Table feature of Excel (see Chapter 28) to run a sensitivity table that shows the EAIR and the lease/buy decision as a function of your estimated end-lease market value of the car:

As the data table shows, leasing is preferable if you think that the actual market value at the end of the lease term will be low relative to the lease residual of $\$ 13,994$. The lease is based on your "reselling" the car to the dealer for $\$ 13,994$; if you think that the actual market value of the car will be much higher, then you would be selling it to the dealer at a loss, and you're better off buying the car and reselling it yourself. ${ }^{10}$ The break-even market value-the estimated market value for which you are indifferent between leasing the car or financing it at the bank at 3\%-is

[^7]somewhere between $\$ 14,000$ and $\$ 14,500$; in this range the EAIR of the lease is 3%, which is equal to the cost of the alternative financing. ${ }^{11}$

Financing the Purchase of a Car with a Bank Loan: Cheaper or More Expensive?

In our analysis above we concluded that the annual cost of the 2-year lease (cell E45) is an EAIR of 5.39%. So it stands to reason that if you can get a cheaper loan from a bank, you should to take the bank loan and use the proceeds to buy the car. And yet...suppose the bank offers you a 3\% loan (with monthly compounding, so that the monthly interest rate is $3 \% / 12=0.25 \%$), and suppose that we have the same amount to finance (namely, the car cost of $\$ 22,905$ minus the money down of $\$ 1,315$). The spreadsheet below shows that the monthly payments on this bank loan are much larger than those of the car lease:

	H	I	J
2	Financing with a bank loan		
3	Cost of car	22,905	<-- =B3+B4
4	Money down	1,315	
5	Amount to finance	21,590	<-- =13-14
6			
7	Bank rate	3\%	
8	Monthly loan payment Monthly lease payment	927.96	<-- =-PMT(17/12,24,15)
9		373.43	
10			
11	Note: The PMT function in cell H 8 calculates the		
12	monthly payment on a \$21,590 loan (cell H5) given for 24		
13	months at monthly interest 0.25% (cell H7/12).		

Now this is confusing: Borrowing from the bank at 3% to buy the car involves a much higher monthly payment (\$926.96) than the monthly lease payment (\$373.43). Yet in our first analysis of the lease on page 000, we concluded that a loan rate of 3% is preferable to the lease EAIR of 5.39%. To resolve this apparent contradiction, recall that the difference between the two-the lease and the loan-is the residual value built into the lease: This residual value—essentially a guarantee that you, the lessee, extend to the auto lessor-both reduces your monthly lease payments and increases your stake in the residual value of the car. Compared with the bank loan, the lease gives you lower payments in return for bearing the higher risk of guaranteeing the residual value of the car. There is no free lunch.

To see that the loan is actually cheaper, assume that you take a separate bank loan to finance the car's residual value of $\$ 15,000$ in 2 years:

$$
P V \text { of residual value }=\frac{\$ 15,000}{\left(1+\frac{3 \%}{12}\right)^{24}}=\$ 14,127.53 .
$$

[^8]We can now divide the purchase price of $\$ 22,905$ into two parts:

$$
\$ 22,905=\underbrace{\$ 14,127.53}_{\substack{\$ 15,000 \\\left(1+\frac{3 \%}{12}\right)^{24}}}+\$ 8,777.47
$$

The total cost of $\$ 8,777.47$ is the cost of using the car for the next 2 years. Of this amount, you have to pay an immediate down payment of $\$ 1,315$, which leaves $\$ 7,462.47$ to finance. Financing this amount with a lease will cost $\$ 373.43$ per month, whereas financing with a bank loan will cost $\$ 320.75$ per month:

	A	B	C
1	AUTO LEASE VERSUS PURCHASE COMPARING BANK LOAN TO LEASE PAYMENT		
2	MSRP	24,550.00	<-- Manufacturer's suggested retail price
3	Capitalized cost	22,490.00	<-- Negotiated price
4	Destination charge	415.00	<-- Paid both by the lessee and the buyer
5	Acquisition fee	450.00	<-- Paid only by the lessee
6	Security deposit	450.00	<-- refunded at end of lease
7			
8	Payment due at signing	1,315.00	<-- =SUM(B4:B6)
9	Monthly payment	373.43	<-- Dealer's lease offer
10			
11	Residual value after 2 years as \% of MSRP	57\%	
12	Lease residual value after 3 years	13,993.50	<-- =B11*B2--lessee guarantees this value
13	Your estimated residual value	15,000.00	<-- Your guess
14			
15	Financing with a bank loan		
16	Bank rate	3\%	
17	Monthly rate	0.25\%	<-- = B16/12
18			
19	Cost of car	22,905.00	<-- = B3+B4
20	Money down	1,315.00	
21	Amount to finance	21,590.00	<-- = B19-B20
22			
23	Loan principal to finance residual in 2 years	14,127.53	<-- = B13/(1+B17)^24
24	Loan principal to finance car lease for 2 years	7,462.47	<-- =B19-B20-B23
25			
26	Monthly loan payment to finance car lease for 2 years	320.75	<-- =PMT(B17,24,-B24)
27	Monthly lease payment	373.43	

The bank loan is cheaper. We've summarized our logic in Figure 3.1.

THINKING ABOUT A CAR LEASE VERSUS A CAR LOAN FROM A BANK				
		Months 1-24		
		$\mid<--22,905.00-14,127.530$	Monthly lease payment Monthly bank oan payment Sell car Month 24 Pay off loan to cover residual	
Explanation: The cost of the car is $\$ 22,905$. You estimate the residual value of the car in 2 years at $\$ 15,000$, which has a present value of $\$ 14,127.53$. The cost of owning the car for 2 years is therefore $\$ 8,777.47$. If you lease the car you are required to put down $\$ 1,315$. Assume that you finance the remaining cost of $\$ 7,462.47$ with a bank loan. This loan will cost you $\$ 320.75$ per month, compared with the $\$ 373.43$ per month for the car lease. It's thus cheaper to finance with a car loan from the bank.				

[^9]
3.6. More-Than-Once-a-Year Compounding and the EAIR

Suppose you are charged interest on a monthly basis, but you want to compute the annual interest cost. Here's an example: XYZ Bank says that it charges an annual percentage rate (APR) of 18% on your credit card balances, with "interest computed monthly." Suppose that what the bank means is that it charges 1.5% per month on the outstanding balance at the beginning of the month. To determine what this means in practice, you should ask yourself "If I have a credit balance of $\$ 100$ outstanding for 12 months, how much will I owe at the end of the 12 -month period?" If we set this up in Excel, we get the following:

	A	B	C	D
1	MONTHLY COMPOUNDING OF CREDIT CARD BALANCES			
2	"Annual" rate	18\%		
3	Monthly rate	1.5\%	<-- =B2/12	
4				
5	Month	Balance at beginning of month	Interest for month	Balance at end of month
6	1	100.00	1.50	101.50
7	2	101.50	1.52	103.02
8	3	103.02	1.55	104.57
9	4	104.57	1.57	106.14
10	5	106.14	1.59	107.73
11	6	107.73	1.62	109.34
12	7	109.34	1.64	110.98
13	8	110.98	1.66	112.65
14	9	112.65	1.69	114.34
15	10	114.34	1.72	116.05
16	11	116.05	1.74	117.79
17	12	117.79	1.77	119.56
18				
19	Effective annual interest rate (EAIR)	19.56\%	<-- =D17/B6-1	
20		19.56\%	<-- =(1+B3)^12	

At the end of 12 months you would owe $\$ 119.56$-the initial $\$ 100$ balance plus $\$ 19.56$ in interest. Cells B19 and B20 show two ways of calculating the effective annual interest rate:

- In cell B19, we take the end-year balance that results from the initial $\$ 100$ credit card balance and divide it by the initial balance to calculate the interest rate:

$$
\begin{aligned}
\text { EAIR } & =\frac{\text { End-year balance }}{\text { Initial balance }}-1 \\
& =\frac{119.56}{100}-1=19.56 \%
\end{aligned}
$$

- In cell B20 we take the monthly interest rate and compound it:

$$
\begin{aligned}
\text { EAIR } & =(1+\text { monthly rate })^{12}-1 \\
& =(1.015)^{12}-1=19.56 \%
\end{aligned}
$$

When the annual interest rate r is compounded n times per year, the $\operatorname{EAIR}=\left(1+\frac{r}{n}\right)^{n}-1$.

APR and EAIR

By an act of Congress ("The Federal Truth in Lending Act") lenders are required to specify the annual percentage rate (APR) charged on loans. Unfortunately, the Truth in Lending Act does not specify how the APR is to be computed, and the use of the term by lenders is not uniform. Although "APR" is legal terminology designed to help the consumer understand the true cost of borrowing, in practice the APR is not well-defined and may not represent the actual cost of borrowing. Sometimes the APR is the effective annual interest rate (EAIR), but in other caseslike the credit card example in this section-the APR is something else. The result is much convoluted wording and a lot of confusion. ${ }^{12}$

The EAIR and the Number of Compounding Periods per Year n

In the above example, the credit card company takes its 18% "annual" interest rate charge and turns it into a 1.5% monthly interest rate. As we saw, the resulting EAIR is 19.56%.

In Figure 3.2 we compute the effect of the number of compounding periods on the EAIR:

THE EFFECTIVE ANNUAL INTEREST RATE (EAIR) AND THE NUMBER OF COMPOUNDING PERIODS

The stated annual interest rate is 18%

Number of compounding periods per year	EAIR formula	EAIR (\%)
1	$(1+18 \%)-1$	18.00
2 (Semiannual compounding)	$\left(1+\frac{18 \%}{2}\right)^{2}-1$	18.81
4 (Quarterly compounding)	$\left(1+\frac{18 \%}{4}\right)^{4}-1$	19.252
12 $(M o n t h l y ~ c o m p o u n d i n g) ~$$\left(1+\frac{18 \%}{12}\right)^{12}-1$	19.562	

[^10]92 PART ONE CAPITAL BUDGETING AND VALUATION

24 (Semimonthly compounding)	$\left(1+\frac{18 \%}{24}\right)^{24}-1$	19.641
52 (Weekly compounding	$\left(1+\frac{18 \%}{52}\right)^{52}-1$	19.685
365 (Daily compounding)	$\left(1+\frac{18 \%}{365}\right)^{365}-1$	19.716

Figure 3.2: The EAIR when an annual interest rate of 18% is compounded for various times per year.

The EAIR grows with the number of compounding periods. The EAIR is

EAIR $=\left(1+\frac{\text { stated annual interest rate }}{\text { number of annual compounding periods }}\right)^{\text {number of compounding periods per year }}-1$

When we do this in Excel, we see that the EAIR grows as the number of compounding periods increases. For a very large number of compounding periods, the EAIR approaches a limit of 19.722% (cell C20 below):

There are two important things to note about the EAIR computation:

- As the number of compounding periods per year n increases, the $\operatorname{EAIR}=\left(1+\frac{r}{n}\right)^{n}-1$ gets higher.
- The rate at which the EAIR increases gets smaller as the number of annual compounding periods gets larger. There is very little difference between the EAIR when interest is compounded 36 times per year $($ EAIR $=19.668 \%)$ and the EAIR when we compound 365 times per year $($ EAIR $=19.716 \%)$.

AQ: Please confirm if this placement ok.

	A	B	C	D	E
1	EAIR AND	MBER O	OMPOU	DING PERIODS	
2	"Annual" rate	18			
3					
4	Number of compounding periods per year	Rate per period	EAIR		
5	1	18.00\%	18.000\%	<-- =(1+B5)^A5-1	
6	2	9.00\%	18.810\%	<-- =(1+B6)^A6-1	
7	3	6.00\%	19.102\%	<-- =(1+B7)^A7-1	
8	4	4.50\%	19.252\%		
9	6	3.00\%	19.405\%		
10	12	1.50\%	19.562\%		
11	24	0.75\%	19.641\%		
12	36	0.50\%	19.668\%		
13	52	0.35\%	19.685\%		
14	100	0.18\%	19.702\%		
15	150	0.12\%	19.709\%		
16	200	0.09\%	19.712\%		
17	250	0.07\%	19.714\%		
18	300	0.06\%	19.715\%		
19	365	0.05\%	19.716\%		
20	infinite		19.722\%	<-- =EXP(B2)-1	
21					
22		as a F	on of the	umber of	
23	20.0\%	Compoun	Periods	r Year	
24	19.8\%				
25	19.6%				
26	$19.4 \% \text { - }$				
27	19.2\%				
28	$\underline{\underline{19.2 \%}}$				
29					
30					
31					
32					
33					
34					
35					
36	1 N	10		30	
37	Number of annual compounding periods				
38					

3.7. Continuous Compounding and Discounting (Advanced Topic)

In cell C20 we compute the limit of the EAIR when the number of compounding periods gets very large. This limit is called continuous compounding. For n annual compounding periods per year, the EAIR $=\left(1+\frac{r}{n}\right)^{n}-1$. When the number of annual compounding periods n gets very large, the EAIR becomes close to e r -1 . The number $e=2.71828182845904$ is the base of natural logarithms and is included in Excel as the function Exp (). In the jargon of finance, $e^{r T}$ is called the continuously compounded future value after T years at annual interest rate r. In the spreadsheet below you can see the difference between the discretely compounded future value and the continuously compounded future value:

	A	B	C
1	CONTINUOUS COMPOUNDING		
2	"Annual" rate	18\%	
3	Number of compounding periods per year	250	
4	Number of years, T	3	
5	Effective annual interest rate, EAIR		
6		19.71\%	
7	Discretely compounded future value after t years $=(1+\text { EAIR })^{\top}$	1.7157	<-- =(1+B2/B3)^(B3*B4)
8	Continuously compounded future value $=e^{r T}$	1.7160	<-- =EXP(B2*B4)

When the number of compounding periods gets very large, the difference between the discrete and continuous interest rate becomes very small.

The Continuously Compounded Discount Factor

In Chapter 2 we saw that future value and present value are closely related:

Period	0	DISCRETE COMPOUNDING	
	X	Future value	T
		Present value	$\mathrm{X}^{*}(1+\mathrm{r})^{\top}$

A similar relation holds for continuous compounding:

Period	0	CONTINUOUS COMPOUNDING	
	X	Future value	T
		Present value	$\mathrm{X}^{*} \mathrm{e}^{\mathrm{TT}}$
	$\mathrm{Y}^{*} \mathrm{e}^{-r T}$	\longleftrightarrow	Y

The following spreadsheet summarizes these relations:

	A	B	C
1	DISCRETE AND CONTINUOUS COMPOUNDING		
2	Interest rate	10\%	
3	Initial amount, X	100	
4	Terminal date, T	3	
5	Discretely compounded future value, $\mathrm{X}^{*}(1+r)^{\top}$	133.100	<-- =B3* $1+\mathrm{B} 2)^{\wedge} \mathrm{B} 4$
6	Continuously compounded future value, $\mathrm{X}^{*} \mathrm{e}^{\text {rT }}$	134.986	<-- =B3*EXP(B2*B4)
7			
8	Interest rate	10\%	
9	Terminal amount, Y	100	
10	Terminal date, T	3	
11	Discretely compounded present value, $\mathrm{Y} /(1+r)^{\top}$	75.131	<-- = $\mathrm{B} 9 /(1+\mathrm{B} 8)^{\wedge} \mathrm{B} 10$
12	Continuously compounded present value, $\mathrm{Y}^{*} \mathrm{e}^{-r \mathrm{~T}}$	74.082	<-- = B9*EXP(-B10*B8)

An Actual Credit Card Example

Continuously compounded interest may seem like an ethereal concept-highly theoretical but not very useful. The example in this subsection shows how useful continuously compounded interest can actually be. The Columbus State University credit card in the ad below charges a penalty annual percentage rate (APR) of $27.99 \% .^{13}$ The parentheses in the ad make it clear that the company is actually charging 0.07669% per day on outstanding balances. This rate is calculated by taking 27.99% and dividing it by the number of days per year: $0.07669 \%=\frac{27.99 \%}{365}$.

Columbus State University Rewards Visa* Credit Card

Annual Percentage Rate (APR) for Purchases	$10.99 \%(0.03011 \%$ Daily Periodic Rate (DPR))
Other APRs	Balance Transfer APR: 0% for six months $(0.000000 \%$ DPR), then the standard APR for purchases Cash Advance APR: $14.99 \%(0.04107 \%$ DPR) Penalty APR: $27.99 \% ~(0.07669 \%$ DPR)
Variable Rate Information	Your APR for purchases (including balance transfer) and cash advance transactions will vary. The rate is determined monthly by

If you carried a $\$ 100$ balance throughout the year, you would owe $100 *(1.007668)^{365}$ at the end of the year. ${ }^{14}$ As the spreadsheet shows, this translates into a 32.286% EAIR (cell B5):

[^11]| | A | B | C |
| ---: | :--- | ---: | :--- |
| 1 | COLUMBUS STATE VISA CARD | | |
| 2 | APR | 27.99% | |
| 3 | Daily | 0.07668% | $<--=\mathrm{B} 2 / 365$ |
| 4 | | | |
| 5 | Effective annual interest rate (EAIR) | 32.286% | $<-=(1+\mathrm{B} 3)^{\wedge} 365-1$ |
| 6 | Continuously compounded interest | 32.300% | $<-=$ EXP(B2)-1 |

As you can see in cell B6, essentially the same interest rate can be computed using continuous compounding. From a computational point of view, using continuous compounding is simpler than discretely compounding a daily interest rate.

CONTINUOUS COMPOUNDING IN THIS BOOK

We rarely use continuous compounding in this book, except in the options chapters (Chapters 20-23). In other cases we use only discrete compounding, although we may occasionally point out in a footnote the continuously compounded counterpart of a discretely compounded calculation.

Computing the Continuous Return

In past subsections we have measured discrete versus continuous compounding. In this section we show how to measure discrete versus continuous rates of return. Suppose that an investment grows from X at time zero to Y at time T. Then the discretely compounded annual return on the investment is $r=\left(\frac{Y}{X}\right)^{1 / T}-1$. The continuously compounded annual return is given by $r=\frac{1}{T} \operatorname{Ln}\left(\frac{Y}{X}\right)$. In the example below, an investment of $\$ 100$ grows to $\$ 200$ over a period of 4 years. ${ }^{15}$ The spreadsheet computes both the discretely compounded and the continuously compounded annual returns:

	A	B	C
1	COMPUTING DISCRETE AND CONTINUOUS RETURNS		
2	Investment at time 0	100	
3	Value at time T	200	
4	T (years)	4	
5			
6	Discretely compounded annual return Continously compounded annual return	18.92\%	<-- =(B3/B2)^(1/B4)-1
7		17.33\%	<-- =(1/B4)*LN(B3/B2)
8			
9	Why is this true: Compounding the initial investment to get the future value		
10	Discrete compounding	200	<-- = $\mathrm{B}^{*}(1+\mathrm{B6})^{\wedge} \mathrm{B} 4$
11	Continuous compounding	200	<-- = B2*EXP(B7*B4)

[^12]The discretely compounded annual return (cell B6) is 18.92%; this is proved in cell B10, where we show that $200=100 *(1+18.92 \%)$. In other words, over 4 years the discretely compounded future value of $\$ 100$ at 18.92% annually is $\$ 200$.
The continuously compounded annual return is 17.32% (cell B7); this is proved in cell B11, where we show that $200=100 * \exp (17.32 \% * 4)$. Over 4 years the continuously compounded future value of $\$ 100$ at 17.32% annually is $\$ 200$.
Note that you would be indifferent in choosing between an annual discretely compounded return of 18.92% and an annual continuously compounded return of 17.32%. Over any given time frame, both rates make an initial investment grow to the same final result!

Summing Up

In this chapter we've applied the time value of money (PV, NPV, and IRR) to a number of relevant problems:

- Finding the effective annual interest rate (EAIR): This is the compound annual interest rate implicit in a specific financial asset; another way to think about this is that it's the annualized IRR. We've given a number of examples-leases, mortgages, credit cardsall of which illustrate that the only way to evaluate the financing cost is by calculating the EAIR.
- The effect of nonannual compounding periods: Many interest rates are calculated on a monthly or even a daily basis. The EAIR demands that we annualize these interest rates so that we can compare them. When the number of compounding periods gets very large (like our Columbus State University example), the EAIR $=e r$, where $e=$ 2.71828182845905 (computed by $=\mathbf{E x p}()$ in Excel) and r is the stated interest rate.

Exercises

1. You are considering buying the latest stereo system model. The dealer in "The Stereo World" store has offered you two payment options. You can either pay $\$ 10,000$ now, or you can take advantage of their special deal and "buy now and pay a year from today," in which case you will pay $\$ 11,100$ in 1 year. Calculate the effective annual interest rate (EAIR) of the store's special deal.
2. You have two options of paying for your new dishwasher: You can either make a single payment of $\$ 400$ today, or you can pay $\$ 70$ for the next 6 months, with the first payment made today. What is the effective annual interest rate (EAIR) of the second option?
3. Your lovely wife has decided to buy you a vacuum cleaner for your birthday (she always supports you in your hobbies...). She called your best friend, a manager of a vacuum cleaner store, and he has suggested one of two payment plans: She can either pay $\$ 100$ now or make 12 monthly payments of $\$ 10$ each, starting from today. What are the monthly IRR and the EAIR of the payment-over-time plan?
4. Your local bank has offered you a mortgage of $\$ 100,000$. There are no points, no origination fees, and no extra initial costs (meaning you get the full $\$ 100,000$). The mortgage is to be paid back over 10 years in annual payments, and the bank charges 12% annual interest.
a. Calculate the monthly mortgage payments
b. What is the mortgage EAIR?
5. Your local bank has offered you a 20 -year, $\$ 100,000$ mortgage. The bank is charging 1.5 points and "processing" costs of $\$ 750$; both points and processing costs are deducted from the mortgage
when it is given. Payments on the mortgage are annual and are based on a 10% interest rate on the full amount of the mortgage (that is, $\$ 100,000$).
a. Calculate the annual mortgage payment
b. Calculate the EAIR
c. Compute an amortization table that shows the amount of interest you can report for taxes each year.
6. Your local bank has offered you a 10 -year, $\$ 100,000$ mortgage with monthly payments. The bank is charging 1.5 points and "processing" costs of $\$ 750$; both points and processing costs are deducted from the mortgage when it is given. Monthly payments on the mortgage are based on the 12% annual interest rate on the full amount of the mortgage (that is, $\$ 100,000$).
a. Calculate the monthly payment on the mortgage, show the amortization table, and compute the EAIR.
b. Will the EAIR of the mortgage change if the loan period is 6 years?
c. Compute the total interest paid in each of the years of the mortgage. You can base your answer on the amortization table or investigate the Excel function Cumipmt.
7. You just bought the first floor of the famous "Egg-Plant" Building for $\$ 250,000$. You plan to rent the space to convenience stores. Your banker has offered you a mortgage with the following terms:

- The mortgage is for the full amount of $\$ 250,000$.
- The mortgage will be repaid in equal monthly payments over 36 months, starting 1 month from now.
- The annual interest rate on the mortgage is 8%, compounded monthly (meaning: $\frac{8 \%}{12}=2 / 3 \%$ per month).
- You have to pay the bank an initiation charge of $\$ 1,500$ and one point.
a. What is the monthly payment you will pay the bank?
b. What is the EAIR of the mortgage?
c. Compute an amortization table that shows the amount of interest you can report for taxes each month.

8. Your local bank has offered you a 5 -year, $\$ 100,000$ mortgage. The bank is charging 1.5 points and "processing" costs of $\$ 750$. If the interest rate is 12% compounded monthly (meaning: 1% per month):
a. Calculate the monthly mortgage payment.
b. Calculate the EAIR.
c. c. Compute an amortization table that shows the amount of interest you can report for taxes each month and use it to compute the annual mortgage interest you can report for tax purposes.
9. You're considering buying an asset that has a 3 -year life and costs $\$ 15,000$. As an alternative to buying the asset, you can lease it for $\$ 4,000$ per year (four annual payments, the first due on the day you sign the lease). If you can borrow from your bank at 10%, should you lease or buy?
10. You're considering buying an asset that has a 3 -year life and costs $\$ 2,000$. As an alternative to buying the asset, you can lease it for $\$ 600$ per year (four annual payments, the first due today). Your bank is willing to lend you money for 15%.
a. Should you lease or purchase the asset?
b. What is the largest lease payment you would be willing to make?
11. You're considering leasing or purchasing an asset with the following cash flows.
a. Calculate the present value of the lease versus the purchase. Which is preferable.
b. What is the largest annual lease payment you would be willing to pay?

	A	B	C	D
1	LEASE VERSUS PURCHASE WITH RESIDUAL VALUE			
2	Asset cost	20,000		
3	Annual lease payment	5,500		
4	Residual value, year 3	3,000	<-- Value of asset at end year 3	
5	Bank rate	15%		
6				
7	Year	Purchase cash flow	Lease cash flow	
8	0	20,000	5,500	
9	1		5,500	
10	2		5,500	
11	3	$-3,000$	5,500	

12. You intend to buy a new laptop computer. Its price at electronic shops is $\$ 2000$, but your next-door neighbor offered to lease you the same computer for monthly payments of $\$ 70$ for a 24 -month period, with the first payment made today. Assuming you can sell the computer at the end of 2 years at $\$ 500$ and the interest rate in the market is 20%, should you buy or lease?
13. Car leasing. You're considering leasing or purchasing a car. The details of each method of financing are given below. The lease is for 24 months. What should you do?

14. Car leasing: You are considering buying a new, very expensive, FancyCar. The details of your negotiation for a 48 -month lease are given below.
a. If your alternative cost of financing is 6%, should you buy or lease?
b. If you financed the purchase through the bank at 6%, what would be your monthly loan payment?
c. As your estimated residual value (cell B15) gets larger, does leasing or buying become more advantageous? Explain.
d. What is the estimated residual value for which you are indifferent between buying and leasing?

	A	B	C
1	AUTO LEASE VERSUS PURCHASE: 48 MONTH LEASE		
2	MSRP	50,000	$<--$ Manufacturer's suggested retail price
3	Capitalized cost	45,000	$<--$ Negotiated price
4	Destination charge	415	$<--$ Paid both by the lessee and the buyer
5	Acquisition fee	450	$<--$ Paid only by the lessee
6	Security deposit	450	$<--$ refunded at end of lease
7			
8	Payment due at signing	1,315	
9	Monthly payment	400	$<--$ Dealer's lease offer
10			
11			
12	Residual value after 4 years as \% of MSRP	60%	
13	Lease residual value after 4 years	30,000	
14	Your estimated residual value	35,000	$<--$ Your guess

15. You're considering buying a new top-of-the-line luxury car. The car's list price is $\$ 99,000$. The dealer has offered you two alternatives for purchasing the car:

- You can buy the car for $\$ 90,000$ in cash and get a $\$ 9,000$ discount in the bargain.
- You can buy the car for the list price of $\$ 99,000$. In this case the dealer is willing to take $\$ 39,000$ as an initial payment. The remainder of $\$ 60,000$ is a "zero-interest loan" to be paid back in equal installments over 36 months.

Alternatively, your local bank is willing to give you a car loan at an annual interest rate of 10%, compounded monthly (that is $10 \% / 12$ per month).
Decide how to finance the car: Bank loan, zero-interest loan with the dealer, or cash payment.
16. You've been offered two credit cards:

- Credit card 1 charges 19% annually, on a monthly basis.
- Credit card 2 charges 19% annually, on a weekly basis.
- Credit card 3 charges 18.90% annually, on a daily basis.

Rank the cards on the basis of EAIR.
17. You plan to put $\$ 1,000$ in a savings plan and leave it there for 5 years. You can choose between various alternatives. How much will you have in 5 years under each alternative?
a. Bellon Bank is offering 12% stated annual interest rate, compounded once a year.
b. WNC Bank is offering 11% stated annual interest rate, compounded twice a year.
c. Plebian Bank is offering 10% stated annual interest rate, compounded monthly.
d. Byfus Bank is offering 11.5% stated annual interest rate, compounded continuously.
18. Assuming that the interest rate is 5%, compounded semiannually, which of the following is more valuable?
a. $\$ 5,000$ today.
b. $\$ 10,000$ at the end of 5 years.
c. $\$ 9,000$ at the end of 4 years.
d. $\$ 450$ at the end of each year (in perpetuity) commencing in 1 year.
19. You plan to put $\$ 10,000$ in a savings plan for 2 years. How much will you have at the end of 2 years with each of the following options?
a. Receive 12% stated annual interest rate, compounded monthly.
b. Receive 12.5% stated annual interest rate, compounded annually.
c. Receive 11.5% stated annual interest rate, compounded daily.
d. Receive 10% stated annual interest rate in the first year and 15% stated annual interest rate in the second year, compounded annually.
How much will you have at the end of 2 years in each option?
20. Michael Smith was in trouble: He was unemployed and living on his monthly disability pay of $\$ 1,200$. His credit card debts of $\$ 19,000$ were threatening to overwhelm this puny income. Every month in which he delayed paying the credit card debt cost him 1.5% on the remaining balance. His only asset was his house, on which he had a $\$ 67,000$ mortgage.
Then a Michael got a phone call from Uranus Financial Corporation: The company offered to refinance Michael's mortgage. The Uranus representative explained to Michael that, with the rise in real-estate values, Michael's house could now be remortgaged for $\$ 90,000$. This amount would allow Michael to repay his credit card debts and even leave him with some money.

Here are some additional facts:

- The new mortgage would be for 25 years and would have an annual interest rate of 9.23%. The mortgage would be repayable in equal monthly payments over this term, at a monthly interest rate of $9.23 \% / 12=0.76917 \%$. The fees on the mortgage are $\$ 8,000$.
- There are no penalties involved in repaying the $\$ 67,000$ existing mortgage.

Answer the following questions:
a. What will Michael's monthly payments be on the new mortgage?
b. After repaying his credit card debts, how much money will Michael have left?
c. What is the effective annual interest rate (EAIR) on the Uranus mortgage?
21. A recent note from the author's credit card company included the following statement.

Annual Percentage Rate for Cash Advances:

Your annual percentage rate for cash advances is the U.S. Prime Rate plus 14.99%, but such cash advance rate will never be lower than 19.99%. As of August 1, 2004, this cash advance ANNUAL PERCENTAGE RATE is 19.99%, which corresponds to a daily periodic rate of 0.0548%. A daily periodic rate is the applicable annual percentage rate divided by 365 .

As of August 1, 2004, what is the effective annual interest rate (EAIR) charged by the credit card on cash advances?
22. WindyRoad is an investment company that has two mutual funds. The WindyRoad Dull Fund invests in boring corporate bonds and its Lively Fund invests in "high-risk, highreturn" companies. The returns for the two funds in the 5 -year period 2001-2005 are given below.
a. Suppose you had invested $\$ 100$ in each of the two funds at the beginning of 2001 . How much would you have at the end of 2005 ?
b. What was the EAIR paid by each of the funds over the 5-year period 2001-2005?
c. Is there a conclusion you can draw from this example?

	A	B	C	D
1	DULL FUND OR LIVELY FUND?			
2	Year	Dull Fund return	Lively Fund return	
3	2001	9.20%	11.50%	
4	2002	5.20%	-14.50%	
5	2003	4.30%	-23.40%	
6	2004	3.30%	42.40%	
7	2005	7.00%	13.60%	
8				
9	Average return	5.80%	5.92%	$<--=$ AVERAGE(C3:C7)

23. (Advanced).
a. Compute the annual continuous returns for Dull Fund and Lively Fund (exercise 22) for each of the years 2001-2005. What is the average continuous return $r_{\text {average }}^{\text {contimus }}$ for each fund?
b. Suppose you had invested $\$ 100$ in each of the two funds at the beginning of 2001. Show that the total amount you would have in each fund (see Exercise 22.a.) can be written as $\$ 100 * e^{5 *{ }^{*} \text { renerimineous }}$. Note that this makes computations much simpler.
24. Capital Star Motors of Canberra, Australia, has the following lease offer for a Smart car:

- Lease term: 48 months.
- No initial deposit, $\$ 8,995$ balloon payment at end of lease.
- Daily payment: $\$ 9.95$ per day, payable monthly.
- Smart car cash cost: $\$ 18,800$.
a. Assuming 30 days per month, compute the effective annual interest rate (EAIR) in the lease.
b. Compute the balloon payment that gives a 7% EAIR.

25. Ten years ago Reem and Forsan took out a $\$ 150,000$ mortgage to buy their new house. The mortgage was a 20 -year, 10% mortgage with annual payments. Today their bank offers similar mortgages at 8% interest; however, when the young couple went to the bank to inquire about the possibility of refinancing the remainder of their mortgage with a 10 -year, 8% mortgage, they were informed that the bank has a $\$ 15,000$ "exit fee" for the refinancing ${ }^{16}$ Should they still refinance the mortgage?
We offer some hints:

- The remaining mortgage principal at any point is the present value of the future payments on the mortgage. Further hint: use Excel's PV function.
- Excel's Rate function can compute the IRRs of fixed payment loans.

[^13]- A convenient template to solve this problem might be the following:

	A	B	C
1	MORTGAGE EXIT FEE		
2	Initial mortgage		
3	Principal	150,000.00	
4	Term (years)	20	
5	Interest rate	10.00\%	
6	Annual payment		<--
7	Term remaining	10	
8	Remaining mortgage principal		<--
9	Exit fee	15,000.00	
10			
11	New mortgage		
12	Principal		<--
13	Term (years)	10	
14	Interest rate	8.00\%	
15	Annual payment		<--
16	Effective annual cost (EAIR)		<--

[^0]: ${ }^{1}$ Such charges are common in many kinds of bank loans, especially mortgages. They're obviously a way to increase the cost of the loan and befuddle the customer.

[^1]: ${ }^{2}$ In the real world payments are probably monthly; see the example in Section 3.3.

[^2]: ${ }^{3}$ Some banks and mortgage brokers also charge an "origination fee," defined as a payment to cover the initial cost of processing the mortgage. The net effect of "points" and the "origination fee" is the sameyou are charged interest on more money than you actually get in hand.

[^3]: ${ }^{4}$ Note that IPMT and PPMT work only when the loan payments are equal.

[^4]: ${ }^{5}$ Most mortgages are, of course, for a much longer term. But 12 months enables us to fit the example comfortably within a page. Later we'll consider longer terms, but the principles will be the same.

[^5]: ${ }^{6}$ Note that because we're writing outflows (like the cost of the computer) as positive numbers, we have to write the inflows as negative numbers.
 ${ }^{7} \mathrm{~A}$ caveat is in order here: We're treating the computer's residual value as if it has the same certainty as the rest of the cash flows, whereas clearly it is less certain. The finance literature has a technical solution to this: We find the certainty equivalent of the residual value. For example, it may be that we expect the residual value to be $\$ 1200$, but that-recognizing the uncertainty of getting this value-we treat this as equivalent to getting an $\$ 800$ residual with certainty.

[^6]: ${ }^{8}$ The "manufacturer's suggested retail price" (MSRP—also referred to as the car's "sticker price"-is the price the auto manufacturer suggests as an appropriate price for the car. In reality it's a kind of official fiction and forms the basis for negotiation between the dealer and the car purchaser. In our example the MSRP is used in the residual value computation, but the actual price paid for the car is less.
 ${ }^{9}$ According to www.edmunds.com: "The lease-end fees are generally reasonable, unless the car has 100,000 miles on it, a busted-up grille and melted chocolate smeared into the upholstery. Dealers and financial institutions want you to buy or lease another car from them, and can be rather lenient regarding excess mileage and abnormal wear. After all, if they hit you with a bunch of trumped-up charges you're not going to remain a loyal customer, are you?... But keep in mind that if you take your business elsewhere, you're going to be facing a bill for items like worn tires, paint chips, door dings, and the like."

[^7]: ${ }^{10}$ Some leases actually give you the option of buying the car for the residual value at the end of the lease term. This effectively locks in the lease EIAR, because if the car is worth more than the lease residual value, you can always buy it for the residual and resell the car on the open market.

[^8]: ${ }^{11}$ The exact residual value for which you are indifferent is $\$ 14,134$.

[^9]: Figure 3.1 Car lease versus car loan.

[^10]: ${ }^{12}$ A case that accompanies this book gives three actual APR examples and the resulting EAIR. In each case the definition of APR used by the lender is different. In only one of the three cases does the APR correspond to the EAIR.

[^11]: ${ }^{13}$ What is the penalty rate? As the card Web site explains: "If you are late making a payment, any rates not exceeding the Penalty Rate may change to the same rate and type as the Penalty Rate." In other words, if you are overdue on any payment, the penalty rate applies to all existing balances.
 ${ }^{14}$ Note the small discrepancy between our Excel and the Visa advertisement: 27.99\% / 365 $=0.0766849 \%$. By the normal rules of rounding off, this should be rounded down to 0.07668%, but Columbus State's Visa takes the extra 0.0001% ! As they say: "Every little bit helps."

[^12]: ${ }^{15}$ The Excel function $\mathbf{L n}$ computes the natural logarithm of a number. If $\operatorname{Ln}(a)=b$, then $e^{b}=a$.

[^13]: ${ }^{16}$ This question was inspired by an article in the Melbourne Age on 12 August 2009. High exit fees are common in Australia; they are also called "early termination fees," "deferred establishment fees," or "early repayment fees."

