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Abstract 

This paper deals with the construction of the covariance matrix for portfolio optimization.  We 

show that in terms of the ex-post standard deviation of the global minimum variance portfolio, 

there is no statistically significant gain from using more sophisticated shrinkage estimators 

instead of simpler portfolios of estimators.  This is true both when short sale constraints that 

prevent the portfolio weights from being negative are imposed as well as when they are not 

imposed.   
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Shrinking the Covariance Matrix—Simpler is Better 
 

Background 

 The computational aspects of finding efficient portfolios have been a concern of the 

finance profession since the seminal work of Markowitz [1952, 1959].  While the mathematics of 

efficient portfolios are relatively simple, the traditional practical implementation of the theory 

often leads to questionable results—in many cases the covariance matrix is not invertible, and in 

other cases the "optimal" portfolios have very large short sale positions. 

 Essentially there are two approaches to deal with the problematic implementation results. 

The first is the "theoretical approach," in which theoretical aspects and assumptions regarding 

portfolio optimization are re-examined.  The second approach is the "implementation approach," 

which largely stems from the fact that the two main elements of Markowitz’s mean-variance 

(MV) theory—the expected stock returns vector and the covariance matrix of the stock returns—

are unknown, and thus must be estimated.  This paper is part of this second, implementationally-

oriented literature, and it mainly deals with the estimation of the covariance matrix. 

 The estimation of the covariance matrix, like any other estimation process, contains an 

error.  When discussing this error, it is common to distinguish between estimation error and 

specification error.  The estimation error occurs when there are not enough degrees of freedom 

per estimated parameter, or in other words when the number of observations in the sample is not 

big enough compared to the number of the estimated parameters.  The specification error occurs, 

when some form of structure is imposed on the model that is being used in the estimation 

process, and therefore the estimator becomes too specific in comparison with reality. 
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 The traditional and probably the most intuitive estimator of the covariance matrix is the 

sample covariance (henceforth—the sample matrix).  However, as Pafka et al. [2004] state, this 

estimator often suffers from the "curse of dimensions":  In many cases the length of the stock 

returns’ time series used for estimation (T) is not big enough compared to the number of stocks 

considered (N).  As a result, the estimated covariance matrix is ill conditioned.  Michaud [1989] 

points out that inverting such a matrix (as required by the MV theory) amplifies the estimation 

error tremendously.  Furthermore, when N is bigger than T, the sample covariance matrix is not 

even invertible at all.1   

 The literature dealing with methods to improve the estimation of the covariance matrix is 

too extensive to survey here.  In recent years several studies have concentrated on estimators 

using monthly data under the assumptions of return stationarity and that sample variances are 

good estimators of the stock variances.  Basically, most of these studies stem from a fundamental 

principle of statistical theory—there exists a tradeoff between the estimation error and the 

specification error.  Hence, in order to develop an improved estimator, the huge estimation error 

of the sample matrix must be reduced without creating too much specification error.  Combining 

the findings of the studies of Chan et al. [1999], Bengtsson and Holst [2002], Jagannathan and 

Ma [2003], Ledoit and Wolf [2003], Ledoit and Wolf [2004] and Wolf [2004] suggests that the 

best estimators of this type are shrinkage estimators and portfolios of estimators. 

 The roots of the shrinkage method in statistics are not related to covariance estimation 

and can be found in the seminal work of Stein [1955].2  Roughly speaking, in our context, a 

shrinkage estimator is usually a weighted average of the sample matrix with an invertible 

                                                 

1 See for example Ledoit and Wolf [2003]. 

2 Efron and Morris [1977] give a beautiful description of Stein’s work. 
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covariance matrix estimator on which quite a lot of structure is imposed and whose diagonal 

elements are the sample variances.3  The proportions used in the shrinkage estimator are often 

found by minimizing the quadratic risk (of error) function of the combined estimator.  These 

proportions are supposed to guarantee the reduction of the estimation error of the sample matrix 

without creating instead too much specification error (which is related to the second estimator in 

the weighted average).  As a result the off-diagonal elements of the shrinkage estimator are 

moderated (or shrunk) compared to the typically large off-diagonal elements of the sample 

matrix.  The variance elements in the diagonal are kept untouched.    

 Jagannathan and Ma [2000] use the concept of a portfolio of covariance estimators.  A 

portfolio of estimators is an estimator consisting of an equally weighted average of the sample 

matrix and several other estimators of the covariance matrix whose diagonal elements are the 

sample variances and at least one of them is invertible.  This concept has also been adopted by 

Bengtsson and Holst [2002]; it is based on the logic that estimators based on different 

assumptions make errors in different directions.  The portfolio of estimators diversifies among 

these errors, and they hopefully cancel out.  In essence, the portfolio approach builds on the 

tradeoff between estimation and specification error.  By averaging the sample matrix (which 

suffers from much estimation error) with other estimators whose primary error is specification 

error an improved covariance matrix can be obtained.  

 Both the shrinkage estimators and the portfolios of estimators which appear in the 

literature have been shown to perform substantially better than the sample matrix.  However, the 

shrinkage estimators are more complex than the portfolios of estimators, at least in their 

                                                 

3 It is straightforward to show that a weighted average of two matrices, one of which is invertible, is also invertible. 

Thus, the shrinkage estimator is always invertible. 
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theoretical derivation.  While a portfolio of estimators is often simply derived by using an 

equally weighted average, the derivation of a shrinkage estimator involves solving a minimum 

problem for finding the proportions in the weighted average and estimating these proportions, as 

they depend on some unknown parameters.4   

 In this paper we check whether, in terms of performance, there is any gain from using the 

more sophisticated shrinkage methods.  We do this by running a performance contest, which is 

based on a "horse race" between several shrinkage estimators and portfolios of estimators.  We 

use the ex-post standard deviation of the global minimum variance portfolio (GMVP) as our 

betterment criterion.  We show that all the estimators perform within the same range, and that it 

is actually impossible to claim that one of them is the better than the other.  Our conclusion is 

that one can use the simpler estimators rather than the more complicated estimators.  That is, 

there is no real need to use the shrinkage estimators and instead one can simply use the portfolios 

of estimators.  

 A significant drawback of many covariance matrix estimators, including the shrinkage 

estimators and the portfolios of estimators, is that they generate minimum variance portfolios 

incorporating significant short sale positions.  Short selling is a significant implemental problem 

in portfolio computations:  It is widely prohibited (mutual funds, for example, in many cases are 

not allowed to short sell) and many individual investors find short selling onerous or impossible.  

Therefore, to the extent that short sales are indeed considered an undesirable feature of portfolio 

optimization, there is some interest in finding an estimator of the covariance matrix that performs 

substantially better than the sample matrix and produces positive efficient portfolios. 

                                                 

4 An example of the proportions estimator can be found Ledoit and Wolf [2003].  While the shrinkage estimators 

may appear to be computationally complex, these are easily computed using Matlab.  
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 Probably the most intuitive way to obtain positive portfolios is to add short sale 

constraints to the portfolio selection problem. 5  In order to check empirically whether this way 

can also produce estimators that generate relatively low ex-post standard deviations of the 

GMVP, we run a new contest—this time imposing the short sale constraints, and using the 

following estimators:  the sample matrix, one shrinkage estimator, one portfolio of estimators 

and a matrix containing only the diagonal elements of the sample matrix (henceforth—the 

diagonal matrix), which serves as our "stalking horse," since it contains much specification 

error.6   

 Similarly to results reported in Bengtsson and Holst [2002] and Jagannathan and Ma 

[2003], we find that when the short sale constraints are imposed, all three estimators perform 

substantially better than the diagonal matrix.  Not surprisingly, however, imposing short sale 

constraints has a cost:  When compared to the unconstrained GMVP constructed from the 

shrinkage estimators and the portfolios of estimators, the GMVP has significantly higher 

variance in the presence of the short sale constraints.  This is true no matter which of the three 

estimators we use when the short sale constraints are imposed.  This statistically significant gap 

                                                 

5 Jagannathan and Ma [2003] show that imposing such constraints can be interpreted as a means of shrinking.  They 

show that constructing the constrained GMVP from the sample matrix is equivalent to constructing the 

unconstrained GMVP from a shrunk covariance matrix. 

6 Note that when the short sale constraints are imposed, the numerical solution for the weights of the GMVP does 

not depend on inverting the covariance matrix.  In this case, therefore, the sample matrix can be added to the 

performance contest no matter the number of stocks considered. 
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between the performances of the estimators when the short sale constraints are imposed and not 

imposed is the "price" of not holding short sale positions.7 

 Our findings differ from those of Bengtsson and Holst [2002] and Jagannathan and Ma 

[2003] in at least one significant respect:  When the short sale constraints are imposed, both the 

shrinkage estimator and the portfolio of estimators perform statistically significantly better than 

the sample matrix.  We also find that, when imposing the constraints, the portfolio of estimators 

performs at least as well as the more sophisticated shrinkage estimator. This again confirms our 

notion that simpler is better, at least when it comes to shrinkage. 

 The remainder of this paper proceeds as follows:  First, we describe our data, our 

methodology, and the covariance matrix estimators used in our study. Then, we present the 

results of our "horse race" between the shrinkage estimators and the portfolios of estimators with 

and without short sale constraints, respectively.  We conclude the paper with a brief summary.  

 

 

Data and period of study 

 We use monthly returns on stocks traded on the New York Stock Exchange (NYSE).  

The stock returns are extracted from the Center for Research in Security Prices (CRSP) database. 

The period of the study is from 1/1964 to 12/2003. 

                                                 

7 Levy and Ritov [2001] also discuss the "price" of not holding short positions.  They measure this price by 

comparing the Sharpe ratios of the optimal portfolios when the short sale constraints are imposed and not imposed. 
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Methodology 

 For evaluating the performance of the estimators included in our performance contest, 

one can compare the estimators computed over a certain sample period (the in-sample period) 

with the covariance matrix realized over a subsequent period (the out-of-sample period).  

However, our main interest is to assess how the performance of the estimators translates into the 

performance of the optimal portfolios obtained from the MV optimization process.  Therefore, 

we find it more useful to conduct an empirical performance contest that focuses on the ex-post 

performance of the respective optimal portfolios.  We follow Chan et al. [1999], Bengtsson and 

Holst [(2002], Jagannathan and Ma [2003], and Ledoit and Wolf [2003], and use the ex-post 

standard deviation of the GMVP as our betterment criterion.  We benefit from the fact that 

finding the GMVP does not require the estimation of the expected stock returns vector, which is 

out of the scope of our paper.8  

 In our contest we mimic an investor who invests in the GMVP of stocks traded on the 

NYSE.  Our investor chooses a covariance matrix estimator which is based on historical data of 

stock returns and then chooses the length of the in-sample period, the historical time frame over 

which he collects monthly return data.  Based on this data our investor computes the covariance 

matrix estimator, finds the GMVP, and invests in this portfolio. 

 Our investor has a fixed investment horizon during which he keeps his portfolio 

unchanged (the out-of-sample period).  When this period is over, he liquidates the portfolio and 

                                                 

8 Elton et al. [2005] point out that evaluating the performance of the covariance matrix estimators based on the ex- 

post GMVP suffers from some bias, since the stocks enter the GMVP are principally the ones with low correlations.   

Basak et al. [2004] state that the estimate of the variance of a GMVP constructed using an estimated covariance 

matrix will on average be strictly smaller than its true variance. 
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starts the whole process of estimating the covariance matrix, constructing the GMVP and holding 

it until liquidation all over again.  

 To illustrate the way we conduct our performance contest, let us assume that the first time 

our investor wishes to invest is January 1974, and that he chooses an in-sample period of 120 

months and an out-of-sample period of 12 months.  Then: 

1. We collect monthly return data of stocks traded on the NYSE from 1/64 till 12/73.  We choose 

an estimator of the covariance matrix, which is computed based on this data.  

2. We construct the GMVP from the estimator computed in phase 1.  

3. We record the monthly returns on the GMVP From 1/74 till 12/74. 

4. We start the whole process all over again.  Namely, we collect monthly return data of stocks 

traded on the NYSE from 1/65 till 12/74, based on this data we compute the same estimator used 

in phase 1, construct the GMVP and record its monthly returns from 1/75 till 12/75 and so on. 

5. We repeat the process of computing the covariance matrix, constructing the GMVP and 

recording its monthly returns in the out-of-sample period 30 times (the last monthly return 

recorded is from 12/2003).  As a result, all together, we collect 360 monthly returns on the 

GMVP (from 1/74 till 12/2003). 

6. We compute the standard deviation of the collected 360 monthly returns. This ex-post 

standard deviation represents the risk our investor was exposed to in the 30 years he was running 

his investment strategy.  Given the chosen in-sample and out-of-sample periods, we can refer to 

the computed ex-post standard deviation as a proxy of the performance of the specific estimator 

used for estimating the covariance matrix. 
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 We conduct our test for several estimators.  Since the motivation of our investor is to 

minimize the risk of his investment, the smaller the standard deviation of the collected 360 

monthly returns, the better the respective estimator of the covariance matrix.9  

 We run our "horse race" six times, each time changing the length of the in-sample period 

or the length of the out-of-sample period.  We use in-sample periods of 120 months (also used in 

Ledoit and Wolf [2003]) and 60 months (also used in Chan et al. [1999] and Jagannathan and Ma 

[2003]).10  We use out-of-sample periods of 12 months (also used in Chan et al. [1999], 

Jagannathan and Ma [2003] and Ledoit and Wolf [2003]), 24 months and 36 months. We chose 

these three out-of-sample periods, since we believe they correspond to realistic investment 

horizons (see also Chan et al. [1999]).  As an aside, we always construct the first GMVP on 1/74 

and record the last return data on the last GMVP on 12/03.  Thus, in each of the six runs for 

every one of the seven estimators participating in our contest, we have a set of 360 monthly 

returns used to compute the respective ex-post standard deviation.  

 It is also worth mentioning that each time we construct a GMVP, we construct it only out 

of NYSE stocks whose returns cover the entire in-sample and out-of-sample periods used.  For 

example, in the case of in-sample period of 120 months and out-of sample period of 12 months, 

for constructing the GMVP of 1/74, we only use NYSE stocks with monthly return data for all 
                                                 

9 It might appear more intuitive to calculate the covariance matrix realized in the out-of-sample period.  Then 

finding the GMVP generated from the calculated covariance matrix and checking which covariance matrix estimator 

generated the "closest" GMVP to the calculated GMVP.  However, this type of test cannot be done when the number 

of stocks considered is bigger than the stock returns’ time series used (as in our case), since then the realized 

covariance matrix is not invertible and the GMVP cannot be calculated.    

10 Jobson and Korkie [1981] mention rules of thumb regarding the length of the in-sample period of 4 to 7 years and 

8 to 10 years. 
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the 132 months from 1/64 till 12/74.  For constructing the GMVP of 1/75, we only use NYSE 

stocks with monthly return data for all the 132 months from 1/65 till 12/75 and so on.  Therefore, 

the resulting number of stocks used for constructing the GMVP varies across the years and the 

runs of the contest (see also Bengtsson and Holst [2002]).11  

 

 

The covariance matrix estimators included in our study 

 In our study we use the following seven covariance matrix estimators: 

 Shrinkage to the single-index model:  This is the shrinkage estimator suggested by Ledoit 

and Wolf [2003], in which the covariance matrix estimator obtained from Sharpe’s [1963] 

single-index model (henceforth—the single-index matrix) joins the sample matrix in the 

weighted average.12  This estimator performed best in Ledoit and Wolf’s [2003] contest and best 

in Jagannathan and Ma’s [2003] contest.13 

 Shrinkage to the constant correlation model:  This is the shrinkage estimator suggested by 

Ledoit and Wolf [2004]), in which the covariance matrix estimator obtained by assuming that 

each pair of stocks has the same correlation (henceforth—the constant correlation matrix) joins 

                                                 

11 We are aware of the fact that this widely-followed procedure introduces survivorship bias into the estimation 

procedure.  However, since the survivorship bias is common to all the compared estimators, we do not consider this 

a significant problem. 

12 We use the value-weighted portfolio of stocks included in our study as the index. 

13 In fact, in Jagannathan and Ma’s [2003] contest, the shrinkage estimator performed best together with the sample 

covariance matrix based on daily return data, which is out of the scope of this paper.  
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the sample matrix in the weighted average.  Ledoit and Wolf [2004] find the performance of this 

estimator comparable to the performance of the shrinkage to the single-index model estimator. 

 A portfolio of the sample matrix, the single-index matrix and the diagonal matrix:  This is 

the estimator, which had been introduced by Jagannathan and Ma [2000] and adopted by 

Bengtsson and Holst [(2002].  It consists of an equally weighted average of the sample matrix, 

the single-index matrix and the diagonal matrix.  Its performance was found to be one of the best 

in Bengtsson and Holst’s [2002] contest. 

 A portfolio of the sample matrix, the single-index matrix and the constant correlation 

matrix:  This estimator has not been previously been used in the literature.  It consists of an 

equally weighted average of the sample matrix, the single-index matrix and the constant 

correlation matrix. 

 A portfolio of the sample matrix, the single-index matrix, the constant correlation matrix 

and the diagonal matrix:  This estimator has not been introduced in the literature before.  It 

consists of an equally weighted average of the sample matrix, the single-index matrix, the 

constant correlation matrix and the diagonal matrix. 

 A random average of the sample matrix and the single-index matrix:  As in the case of 

the shrinkage to the single-index model estimator, this estimator is based on a weighted average 

of the sample matrix and the single-index matrix.  However, this time the proportion of the 

single-index matrix in the weighted average is drawn from a uniform distribution on the interval 

(0.5,1).  We include this estimator in our contest, because it helps us highlight the problem of 

estimating the proportions of the estimators in the shrinkage estimators (see also Bengtsson and 

Holst [2002] and Jagannathan and Ma [2003]).  Ledoit and Wolf [2003] and Bengtsson and Holst 

[2002] point out that there is more estimation error in the sample matrix than there is 
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specification error in the single-index matrix.  Therefore, we allow the proportion of the single-

index matrix in the random average to obtain only values greater than 0.5. 

 The diagonal matrix:  This estimator contains a lot of specification error, and clearly does 

not obey the statistical principle of reducing the estimation error of the sample matrix without 

creating instead too much specification error.  It is included in the contest as our "stalking horse," 

since for our data the sample matrix is not invertible and cannot therefore be used.  

   

 

The performance contest with no short sale constraints  

 In this section we describe the results of our "horse race", when the short sale constraints 

are not imposed.  We show empirically that there is no statistically significant gain from using 

the more sophisticated shrinkage methods—all of the methods discussed in this section lead to 

similar improvements in terms of the ex-post standard deviation of the GMVP.  We conclude 

that simpler is better, at least when it comes to shrinkage. 

 In Exhibit 1 we report the ex-post standard deviations obtained for each covariance 

matrix estimator, when the short sale constraints are not imposed.  The standard deviations are 

annualized through multiplication by 12 . 
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12 months 24 months 36 months 12 months 24 months 36 months
Average size of universe of stocks 901 853 806 1261 1186 1110
The largest universe 1063 945 865 1739 1572 1424
The smallest universe 795 769 729 1029 985 958

Diagonal 13.12% 13.12% 13.16% 12.90% 12.92% 12.84%
Shrinkage to constant correlation 8.52% 8.97% 8.91% 8.46% 8.85% 8.83%
Random average of sample and single index 8.51% 8.93% 9.00% 8.47% 8.83% 8.89%
Portfolio of sample, single index, constant correlation 8.47% 8.90% 8.85% 8.40% 8.83% 8.81%
Portfolio of sample, single index, constant correlation, diagonal 8.46% 8.85% 8.81% 8.37% 8.81% 8.78%
Portfolio of sample, single index, diagonal 8.39% 8.89% 8.93% 8.34% 8.94% 8.91%
Shrinkage to single index 8.37% 8.89% 8.94% 8.31% 8.91% 8.90%
Gap between worst and best improver 0.15% 0.12% 0.19% 0.16% 0.13% 0.13%

Ex-Post Standard Deviations, Short Sales Constraints Are Not Imposed

In sample 120 months In sample 60 months
Out of sample period

 
Exhibit 1:  The annualized ex-post standard deviations generated by each of the seven tested 

covariance matrix estimators in the six runs of the performance contest, when the short sale 

constraints are not imposed. 

 

 The six estimators all perform substantially better than the "stalking horse," the diagonal 

matrix.  The most important point of our comparison, however, is not the improvement of the six 

methods over the (obviously inferior) diagonal matrix.  The most important point is that all of the 

estimators we examine perform within the same range.  In other words, we find very little 

qualitative difference between any of the estimators:  The largest gap in a specific run between 

the standard deviations corresponding to the "best" and "worst" improvements of our six 

estimators is obtained in the case of in-sample period of 120 months and out-of-sample period of 

36 months and it is only 0.19%.  Checking, for each run, whether the tiny differences in the 

performance of the various estimators are statistically significant results in a negative answer in 

all cases.14  In addition, we can see that the ranking of the estimators changes from one run to 

another, and in fact the portfolio of the sample matrix, the single-index matrix, the constant 

                                                 

14 Throughout this paper, we use chi square tests for statistical inference. The smallest p-value obtained here is 

29.12%. 
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correlation matrix and the diagonal matrix "wins" the contest four times, whereas the shrinkage 

to the single-index model estimator "wins" only twice.  

 We conclude that all six of the estimators have substantially the same performance 

improvement, and that therefore there is no need to use the methodologically complex shrinkage 

estimators.  Instead, one can simply use the portfolio of estimators, as long as these portfolios 

obey the statistical principle of reducing the estimation error of the sample matrix without 

creating instead too much specification error.  

 One could claim that if a better estimator than the market matrix or the constant 

correlation matrix is found, then the shrinkage estimator relaying on this estimator will perform 

better than any portfolio of estimators.  We do not agree with such a claim.  In our opinion, 

placing this estimator in a portfolio of estimators will result in a performance within the same 

range as of the shrinkage estimator.  An example for that can be found in the work of Bengtsson 

and Holst [2002].  They develop a rather complicated shrinkage estimator, in which the estimator 

joining the sample matrix is generated from principal component analysis.  According to them, 

their new shrinkage estimator performs better than the shrinkage estimator of Ledoit and Wolf 

[2003].  However, when they use a portfolio of estimators consisting of the estimator generated 

from principal component analysis, the sample matrix and the diagonal matrix, they obtain an 

estimator that performs at least as good as their shrinkage estimator. 

 We can see that both the random average of the sample matrix and the single-index 

matrix and the shrinkage to the single-index model estimator perform within the same range.  

Theoretically, the shrinkage estimator should perform better than any other weighted average of 

the two estimators, since the proportions in the weighted average of the shrinkage estimator are 

obtained from minimizing the quadratic risk (of error) function of the combined estimator.  Yet, 
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it seems that in practice, estimating these specific proportions gives rise to a new type of error, 

and overall the shrinkage estimator does not perform better than the random average.  This result 

is similar to the one obtained regarding this issue in Jagannathan and Ma [2003].  We suspect 

Bengtsson and Holst (2002) report a contradicted result, because they use for their random 

average a uniform distribution on the interval (0,1), and not on the interval (0.5,1).  Thus, they do 

not prevent situations, in which the proportion of the single-index matrix is smaller than the 

proportion of the sample matrix.  In these cases, the estimator obtained contains probably too 

much estimation error, and therefore cannot compete with the shrinkage estimator.  

 As an aside, we can notice that when keeping the length of the out-of-sample period fixed 

and changing the in-sample period from 120 to 60 months, we obtain quite similar results for the 

performance of the various estimators.  When keeping the in-sample period fixed and changing 

the out-of-sample period from 12 months to 24 or 36 months, the annualized standard deviations 

grow in approximately 0.45%, and the p-values for the chi-square tests for significance of 

differences in performance range from 2.02% to 12.71%.  We believe future research should 

address more carefully the effects (if any) of the chosen length of the in-sample and out-of-

sample periods on the performance of the covariance matrix estimators.   

 

 

The performance contest with short sale constraints 

 So far we have evaluated the covariance matrix estimators without addressing the issue of 

short selling positions.  In this section we discuss this issue and the effects of imposing the short 

sale constraints on the portfolio selection problem. 
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Average short positions 

 In Exhibit 2 we present the average amount of short positions obtained for each estimator 

in all six runs of our contest.  The amount of short positions is defined as the sum of all negative 

portfolio weights.  

 

Covariance Matrix Estimator
120 / 12 120 / 24 120 / 36 60 / 12 60 / 24 60 / 36

Diagonal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Random average of sample and single index -90.09% -91.40% -87.84% -62.01% -63.37% -64.21%
Portfolio of sample, single index, constant correlation -117.17% -117.46% -116.50% -91.36% -92.10% -94.46%
Portfolio of sample, single index, diagonal -90.21% -90.47% -89.64% -65.22% -65.86% -67.87%
Portfolio of sample, single index, constant correlation, diagonal -101.41% -101.23% -99.99% -84.04% -84.43% -86.30%
Shrinkage to constant correlation -129.07% -130.24% -130.94% -92.76% -93.41% -96.44%
Shrinkage to single index -96.96% -97.96% -97.84% -66.55% -67.19% -69.29%

Average Short Positions 
In Sample / Out of Sample

Exhibit 2:  Average short positions—total of all negative portfolio proportions—generated by 

each of our seven tested covariance matrix estimators.  An average short interest of -96.96%, 

obtained for the shrinkage to the single-index model estimator in the run of in-sample period of 

120 months and out-of-sample period of 12 months, means that in average, over the 30 

portfolios constructed in this run based on this estimator, for every dollar invested in the 

portfolio we short 96.96 cents worth of stocks, while buying $1.9696 worth of other stocks. 

 

 We can see that, apart from the estimator based on the diagonal matrix, which generates a 

positive GMVP, all other estimators in all the runs of the contest generate portfolios with 

significant short sale positions.  Moving from in-sample period of 120 months to in-sample 

period of 60 months reduces the average short positions for each one of the estimators; however 

even then we are still talking about quite significant short sale positions.  Also Bengtsson and 

Holst [2002], Jagannathan and Ma [2003] and Ledoit and Wolf [2003] report significant short 

positions in their performance contests.  

 To the extent that short sales are considered an undesirable feature of portfolio 

optimization, the shrinkage estimators and the portfolios of estimators cannot satisfy us anymore. 
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We cannot count on the diagonal estimator either, since it generates relatively high out-of sample 

standard deviations (see Exhibit 1).  Hence, our goal now is to check whether we can find an 

estimation method that generates both low ex-post standard deviations and positive portfolios.  

One candidate for such a method is the addition of the short sale constraints to the GMVP 

problem.  In the next subsection we examine empirically the attractiveness of this method.   

 

Imposing the short sale constraints 

 We again run our performance contest, this time imposing the short sale constraints.  We 

focus this time on three covariance matrix estimators—the sample matrix, the shrinkage to the 

single-index model estimator and the portfolio of the sample matrix, the single-index matrix, the 

constant correlation matrix and the diagonal matrix.15  As before, our "stalking horse" is the 

diagonal matrix and the ex- post standard deviation of the GMVP is used as our betterment 

criterion.   

 In Exhibit 3 we report the ex-post standard deviations obtained for each covariance 

matrix estimator, when the short sale constraints are imposed.  The standard deviations are 

annualized through multiplication by 12 . 

                                                 

15 In order to find the GMVP weights, we use the Mosek iterative procedure together with the Matlab program.  

When the diagonal matrix is used, the short sale constraints are of course not needed, as the diagonal matrix anyhow 

generates a positive GMVP.  



 18

 

12 months 24 months 36 months 12 months 24 months 36 months
Average size of universe of stocks 901 853 806 1261 1186 1110
The largest universe 1063 945 865 1739 1572 1424
The smallest universe 795 769 729 1029 985 958

Diagonal 13.12% 13.12% 13.16% 12.90% 12.92% 12.84%
Sample 10.74% 10.87% 11.08% 10.84% 11.23% 11.48%
Shrinkage to single index 9.94% 10.19% 10.23% 9.75% 10.24% 10.17%
Portfolio of sample, single index, constant correlation, diagonal 9.65% 10.01% 10.06% 9.15% 9.65% 9.57%

Ex-Post Standard Deviations, Short Sales Constraints Are Imposed

In sample 120 months In sample 60 months
Out of sample period

Exhibit 3:  The annualized ex-post standard deviations generated by each of the four tested 

covariance matrix estimators in the six runs of the performance contest, when the short sale 

constraints are imposed. 
 

 As in the studies of Bengtsson and Holst [2002] and Jagannathan and Ma [2003], our 

results confirm that imposing the short sale constraints substantially reduces the ex-post standard 

deviations compared to the GMVP of our "stalking horse," the diagonal matrix.  Not 

surprisingly, however, imposing short sale constraints has a cost, which is revealed when one 

compares the ex-post standard deviations generated by the shrinkage estimator and the portfolio 

of estimators when the short sale constraints are imposed and when they are not imposed.  In the 

case of the shrinkage estimator, imposing the constraints increases the ex-post standard 

deviations by about 1.3% to 1.6%.  In the case of the portfolio of estimators, imposing the 

constraints increases the ex-post standard deviations by about 1.2% when in-sample periods of 

120 months are used and by about 0.8% when in-sample periods of 60 months are used. All gaps 

in all runs for both estimators are statistically significant.16  This statistically significant gap 

between the performances of the estimators when the short sale constraints are imposed and not 

imposed is the "price" of not holding short sale positions. 

                                                 

16 We again use a chi square test.  The largest p-value obtained this time is 0.39%.  
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 Our findings differ from those of Bengtsson and Holst [2002] and Jagannathan and Ma 

[2003] in at least one significant respect:  When the short sale constraints are imposed, both the 

shrinkage estimator and the portfolio of estimators perform statistically significantly better than 

the sample matrix.17  In contrast, applying the same statistical significance tests to the results and 

samples of Bengtsson and Holst [2002] and Jagannathan and Ma [2003] reveals that in these 

studies the gaps obtained are not statistically significant. We believe future research should 

address this issue more carefully.  We can also see that systematically the portfolio of estimators 

generates lower ex-post standard deviations than the shrinkage estimator, with p-values that 

range from 4.18% to 31%.  This again confirms our notion that simpler is better, at least when it 

comes to shrinkage.  

 As an aside, it can be noticed that when keeping the out-of-sample period unchanged and 

reducing the in-sample period from 120 months to 60 months, the portfolio of estimators 

performs better, the performance of the shrinkage to the single-index model estimator is almost 

unchanged and the sample matrix deteriorates.  This time the smallest p-value obtained is 6.12%.  

In addition, keeping the in-sample period unchanged and increasing the out-of-sample period 

from 12 months to 24 or 36 months damage the performance of the three estimators in terms of 

the ex-post standard deviations.  The smallest p-value obtained for this set of checks is also 

6.12%. 

 

 

                                                 

17 In the run of in-sample period of 120 months and out-of-sample period of 24 months, for the gap between the 

shrinkage estimator and the sample matrix we obtain a p-value of 2.87%.  In all the other cases, the largest p-value 

obtained is 1.07%.  
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Summary  

 This paper deals with estimating the covariance matrix of stock returns, which is one of 

the two main elements of the mean-variance theory of Markowitz [1952, 1959] for portfolio 

selection.   

 Estimating the covariance matrix based solely on the sample matrix is famously difficult, 

since very often the sample matrix suffers from the "curse of dimensions."  As a result, a 

significant finance literature, which looks for better methods to estimate the covariance matrix, 

has been spawned.  Out of this rich literature, we have chosen to focus, in this paper, on 

estimators using monthly data under the assumptions of return stationarity and that sample 

variances are good estimators of the stock variances.  Combining the findings of recent studies 

reveals that the best estimators of that type are the shrinkage estimators and the portfolios of 

estimators. 

 In our study, we run a "horse race" between various shrinkage estimators and portfolios 

of estimators.  We use the ex-post standard deviation of the global minimum variance portfolio 

(GMVP) as our betterment criterion.  We show empirically that all the estimators perform within 

the same range, and that it is actually impossible to claim that one of them is the better than the 

other.  Hence, there is no statistically significant gain from using the more sophisticated 

shrinkage methods, and therefore one can instead use the simpler portfolios of estimators.  We 

conclude that simpler is better, at least when it comes to shrinkage.  

 A significant drawback of many covariance matrix estimators, including the shrinkage 

estimators and the portfolios of estimators, is that they generate minimum variance portfolios 

incorporating significant short sale positions.  To the extent that short sales are considered an 

undesirable feature of portfolio optimization, the most intuitive way to overcome them is to add 
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to the portfolio selection problem short sale constraints that prevent the portfolio weights from 

being negative, no matter which covariance matrix estimator is used.      

 In our study, we also run a "horse race" in which the short sale constraints are imposed 

and again the ex-post standard deviation of the GMVP is used as the betterment criterion.  Our 

findings regarding the short sale constraints differ from previous studies in at least one 

significant respect:  In our sample when the short sale constraints are imposed, both the 

shrinkage estimator and the portfolio of estimators perform statistically significantly better than 

the sample matrix.  We believe future research should address this issue more carefully.  We also 

find that, when imposing the constraints, the portfolio of estimators performs, ex-post, at least as 

well as the more sophisticated shrinkage estimator. This again confirms our notion that simpler is 

better, at least when it comes to shrinking the covariance matrix.  
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