SOME BOND BASICS

To illustrate:

- Accrued interest
- Bond pricing
- Bond yield calculations

Ultimately to ask:

- Why is the yield on the Pagenet bond so much higher than that of the GE bond?

PAGENET BOND

5
ENTER ALL VALUES AND HIT <GO>.
YIELD ANALYIS CUSIP: 695542AB

Bloomberg-all rights reserved. Frankfurt:69-920410 Hong Kong:2-521-3000 London:171-330-7500 New York:212-318-2000 Princeton:609-279-3000 Singapore:226-3000 Sydney:2-9777-8600 Tokyo:3-3201-8900 Sao Paulo:11-3048-4500 G158-267-0 30-Jul-97 7:51:21

GENERAL ELECTRIC CAPITAL CORP．BOND

5

ENTER ALI VALUES AND HIT＜GO＞．

YIELD ANALY8I8 CUSIP：36962FMM GENL ELEC CAP GE $5.8809 / 15 / 0895.0117 / 95.0117(6.52 / 52)$ BFV＠ $7: 56$

Y I E L D MA	RITY		TO．9／15／． 8 WORKOUT，	
CA C C U A T T O N $\mathrm{C}_{\text {¢ }}$			$\frac{\mathrm{P} \text { A Y M E N T }}{\text { PRINCIPAL }} \frac{1 \mathrm{~N} V \mathrm{I} \text { C E }}{950117.26}$	
STREET CONVENTION	\％楽的	－bewt		
U．S．GOVT EQUIVALENT	श－－瑗	6.517	139 DAYS ACCRUED INT TOTAL	22703.33
COMPUCORP／MONROE（TM）		6.517		TOTAL 972820.59
TRUE YIETD	§\％sks	6.516	INCOME	
EQUIVALENT \＃，／YR COMPOUND		6.623	REDEMPTION VALUE 1000000．00	
JAPAN INTEREST（CSIMPLE）	－4985	6.661	COUPON PAYMENTINTEREST＠\％\％\％\％\％\％	
PROCEEDS／MMKT（ACT／\％${ }^{\text {a }}$ ）				
AFTERTTAX： INCOME	4.011	4.011	TOTAL 1984 R E T U R N GROSS PROFIT 1011	
			GROSS PROFIT RETURN－2／YR COMP	
－NV DURATION（YEARS）	8.039	8.039		
ADJ／MOD DURATION	7.786	7.786	D E T A I E D A N A Y Y I S	
RISK	7.574	7.574	HIT 1 ＜GO＞：TOTAL REIURN HIT 2 ＜GO＞：PRICE TABLE	
CONVEXITY	0.784	0.784		
PRICE VALUE OF A 繒娄	0.07574	0.07574		
YIELD VALUE OF A © \％\％y	0.00413	0.00413		

Bloomberg－all rights reserved．Frankfurt：69－920410 Hong Kong：2－521－3000 London：171－330－7500 New York：212－318－2000
Princeton： $609-279-3000 ~ S i n g a p o r e: 226-3000 ~ S y d n e y: 2-9777-8600 ~ T o k y o: 3-3201-8900 ~ S a o ~ P a u l o: 11-3048-4500 ~$ G158－267－0 30－Jul－97 7：56：28

	A	B	C	D	E	F	G	H	I
1	GE BOND								
2									
3									
4	Settlement date (current date)	4-Aug-97							
5	Bond coupon	5.880\%	<-- Interest paid semiannually						
6	Price	95.0117							
7	Maturity	15-Sep-08							
8	Date of last interest payment	15-Mar-97							
9	Date of next interest payment	15-Sep-97							
10	Days from last interest to settlement	142							
11	Days from last interest to next interest	184							
12									
13	Invoice price calculation								
14	Price	95.0117							
15	Accrued interest	2.2689	<-- Should be 5.880\%/2 * 142 days / 184						
16	Invoice price	97.2806							
17				Note: Bloomberg calculates accrued interest based on					
18				30 day months: $=139 / 180 * 5.88 / 2$. This gives					
19	Yield calculation			2.270333333					
20									
21	Date	Payment							
22	4-Aug-97	-97.2806		Yield to maturity					
23	15-Sep-97	2.94		XIRR	6.6181\%	<-- =XI	B4		
24	15-Mar-98	2.94		YIELD	6.5167\%	<-- = Y	,B7	00,	
25	15-Sep-98	2.94							
26	15-Mar-99	2.94		Notes					
27	15-Sep-99	2.94		XIRR is the actual IRR of the payments, taking into account the					
28	15-Mar-00	2.94		actual bond payment dates					
29	15-Sep-00	2.94		YIELD is the standardized yield assuming 30 day months (360 day years)					
30	15-Mar-01	2.94							
31	15-Sep-01	2.94							
32	15-Mar-02	2.94		Current yield	6.189\%	<-- = B5*100/B6			
33	15-Sep-02	2.94							
34	15-Mar-03	2.94							
35	15-Sep-03	2.94							
36	15-Mar-04	2.94							
37	15-Sep-04	2.94							
38	15-Mar-05	2.94							
39	15-Sep-05	2.94							
40	15-Mar-06	2.94							
41	15-Sep-06	2.94							
42	15-Mar-07	2.94							
43	15-Sep-07	2.94							
44	15-Mar-08	2.94							
45	15-Sep-08	102.94							

Why is the YTM of Pagenet $=\mathbf{9 . 6 4 6 0 \%} \gg \mathbf{6 . 6 1 8 1 \%}$?

- GE's bond is for 11 years, Pagenet's is for 8.5 years. Downsloping term structure? This is unlikely, as the following graph shows (Pagenet is rate B; the B-yield curve is not reported on Bloomberg).

- Risk premium? GE's bond is rated AAA, Pagenet is rated B. This is surely the primary reason for the difference in the yields.

NOTE: The YTM is not an expected return, it is an IRR based on the promised payments. This is UNLIKE any other return we calculate in finance! All costs of capital are based on expected returns.

NOTE: In second set of slides we show that:

- Expected Pagenet bond yield $=\mathbf{7 . 3 9 2} \% \ll \mathbf{9 . 4 5 7 \%}=$ YTM

TWO PROBLEMS

1. Calculate the COST OF DEBT in order to calculate the WACC-for this you need the EXPECTED BOND RETURN.

NOTE: It may not matter that much:

$$
\begin{aligned}
& \text { If } \begin{array}{l}
\frac{D}{E+D}=20 \%, t_{C}=40 \% . \text { Then whether Pagenet's } \\
E\left(r_{D}\right)=95 \% \text { or } 7.4 \% \text { will change the WACC by } \\
E+D \\
\Delta W A C C= \\
=[9.5 \%-7.4 \%] *\left(1-t_{C}\right) \frac{D}{E+D} \\
\quad=2.1 \% * 0.6 * 0.2=0.25 \%
\end{array}
\end{aligned}
$$

This is well within the usual bounds of error for most WACCs!
2. Value a bond. Here there are two approaches:

- Standard finance approach:

Discount expected bond payments at expected (risk-adjusted) bond return.
This gets us back to the problem of YTM versus expected bond return.

- Standard industry approach:

Discount promised bond payments at rating-adjusted YTM

